当前位置: X-MOL首页全球导师 国内导师 › 彭华备

个人简介

教育背景 2002.09-2006.06,四川大学材料成型及控制工程专业 学士 2006.09-2009.06,四川大学钢铁冶金专业 硕士 2009.09-2012.06,四川大学材料加工工程 博士 2016.04-2017.04, University of Glasgow 访问学者 工作经历 2012.07-2015.08,四川大学制造科学与工程学院 讲师 2015.09-至 今,四川大学制造科学与工程学院 副教授 研究领域涉及形状记忆合金、阻尼合金、高强高塑性钢、高熵合金等金属功能和结构材料及其马氏体相变行为。主持国家自然科学基金面上及青年基金、四川省应用基础计划重点和面上项目以及多项企业和研究院的横向课题;主研国家自然科学基金面上项目三项。以第一或通讯作者在Acta Biomaterialia、International Journal of Machine Tools and Manufacture、Journal of Materials Science & Technology、Scripta Materialia、Materials Science and Engineering A、金属学报等国内外重要期刊上发表30余篇,授权发明专利10多项。担任Acta Biomaterialia、Applied Materials Today、Bioactive Materials、Materials & Design、Journal of Materials Science & Technology、Materials Science and Engineering A、金属学报等国内外著名期刊审稿人。曾获“四川大学好未来优秀学者三等奖”,“四川大学先进个人”,“四川大学青年骨干教师奖”,“四川大学青年教师教学竞赛优秀奖”,“四川大学本科教学质量奖”。 开设课程 本科生课程:《材料成型原理》;《先进凝固技术及应用》 硕士生课程:《材料结构与性能》 主持项目: 1国家自然科学基金面上项目,共格纳米相诱发Fe-Mn-Al基合金非热弹性向热弹性马氏体转变的机制及控制因素,2020/01-2023/12 2四川省应用基础计划,纳米第二相的类型和尺寸对FeMnAlNi合金形状记忆效应的影响机制及其控制,2016/03-2019/03 3国家自然科学基金青年项目,δ→γ相变诱发缺陷对FeMnSi基合金记忆效应的影响及其调控,2015/01-2017/12 参与项目: 1国家自然科学基金面上项目,基于HCP马氏体转变实现优良性能的Co基形状记忆合金研究,2017/01-2020/12 2国家自然科学基金青年科学基金项目,3D打印多孔可生物降解Fe-Mn金属材料在骨缺损修复中支撑和降解的调控与平衡研究,2017/01-2019/12 3国家自然科学基金面上项目,高Si奥氏体高锰钢的力学行为和耐磨性能研究,2010/01-2012/12 授权专利 [1] 一种提高钴镍基合金形状记忆效应的方法,201911078269.0 [2] 一种高超弹性铁锰铝镍基多主元合金,201911078267.1 [3] 相变诱导塑性的高强度铁锰铝镍基多主元合金,201911077358.3 [4] 一种腔体孔的密封结构,201910297471.6 [5] 一种用于形状记忆合金紧固环的扩径装置,201910297472.0 [6] 一种提高铁锰硅基形状记忆合金可恢复应变的方法,201811193767.5 [7] 一种制备粗晶铁锰硅基形状记忆合金的方法,201811193766.0 [8] 低镍型FeMnAlNi基形状记忆合金及其处理方法,201810280620.3 [9] 一种提高FeMnAl合金形状记忆性能的方法,201810280667.X [10] 预测铁锰硅基合金奥氏体加高温铁素体双相区温区的方法,201810280668.4 [11] 一种制备磁性铁锰硅基形状记忆合金的方法,201710858157.1 [12] 一种提高铁锰阻尼合金耐腐蚀性能的方法,201710858158.6 [13] 一种高温氧化制备磁性铁锰硅基形状记忆合金的方法,201710858289.4 [14] 一种制备高屈服强度孪生诱导塑性钢的方法,201710604528.3 [15] 一种提高高强度铁锰基阻尼合金阻尼性能的方法,201410143007.9 [16] 一种制备免训练铁锰硅基形状记忆合金的方法,201410102165.X [17] 一种提高亚稳奥氏体不锈钢形状记忆效应的方法,201410026062.X [18] 含高温铁素体的免训练铸造铁基形状记忆合金,200810045202.2 [19] 一种具有显著加工硬化能力的高硅奥氏体高锰钢,200910058542.3

研究领域

Ø 形状记忆合金; Ø 阻尼合金; Ø 高强高塑性钢; Ø 高熵合金; Ø 马氏体相变行为; Ø 纳米相及其相界面工程; Ø 增材制造技术制备生物可降解金属材料。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] X. Dong, N. Li, Y. Zhou, H. Peng, Y. Qu, Q. Sun, H. Shi, R. Li, S. Xu, J. Yan, Grain boundary character and stress corrosion cracking behavior of Co-Cr alloy fabricated by selective laser melting, J. Mater. Sci. Technol. 93 (2021) 244–253. [2] H. Shi, Y. Chai, N. Li, J. Yan, H. Peng, R. Zhang, M. Li, D. Bai, K. Chen, Z. Liu, M. Luo, Q. Sun, X. Zhu, Y. Zhang, R. Li, B. Zhang, X. Dong, Investigation of interfacial reaction mechanism between SiC and Inconel 625 superalloy using thermodynamic calculation, J. Eur. Ceram. Soc. 41 (2021) 3960–3969. [3] Q. Yang, K. Sun, C. Yang, M. Sun, H. Peng, X. Shen, S. Huang, J. Chen, Compression and superelasticity behaviors of NiTi porous structures with tiny strut fabricated by selective laser melting, J. Alloys Compd. 858 (2021) 157674. [4] Y. Nie, G. Chen, H. Peng, S. Tang, Z. Zhou, F. Pei, B. Shen, In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds, Acta Biomater. 121 (2021) 724–740. [5]H. Peng, D. Wang, Q. Liao, Y. Wen, Degeneration and rejuvenation of shape memory effect associated with the precipitation of coherent nano-particles in a Co-Ni-Si shape memory alloy, J. Mater. Sci. Technol. 76 (2021) 150–155. [6] L. Yong, Q. Luo, H. Peng, J. Yan, B. Xu, Y. Wen, Dependence of shape memory effect on austenitic grain sizes in thermo-mechanical treated Fe-Mn-Si-Cr-Ni shape memory alloys, Mater. Charact. 169 (2020) 110650. [7] X. Dong, Y. Zhou, Q. Sun, Y. Qu, H. Shi, W. Liu, H. Peng, B. Zhang, S. Xu, J. Yan, N. Li, Fatigue behavior of biomedical Co–Cr–Mo–W alloy fabricated by selective laser melting, Mater. Sci. Eng. A. 795 (2020) 140000. [8] X. Yang, Q. Liao, D. Wang, S.L. Wang, B.N. Qian, H.B. Peng, Y.H. Wen, Further improvement of shape memory effect in a Co-6.8Al-6.3W alloy through aligned precipitates, J. Alloys Compd. 846 (2020) 156383. [9] Y. Nie, H. Peng, L. Yong, D. Wang, C. Zhang, S. Wang, Y. Wen, Improvement of shape memory effect via strengthening austenite by virtue of thermally activated process in FCC-type metastable multicomponent alloys, Mater. Sci. Eng. A. 793 (2020) 139748. [10] W. He, Q. Luo, H. Peng, Y. Wen, Remarkable improvement of damping capacity in FeMn-based alloys by a long annealing, Mater. Sci. Technol. (2020) 1–8. [11] P. Huang, Y. Wang, H. Peng, J. Chen, P. Wang, Diffusion bonding W and RAFM-steel with an Fe interlayer by hot isostatic pressing, Fusion Eng. Des. 158 (2020) 111796. [12]H. Peng, L. Yong, G. Wang, H. Wang, Y. Wen, Tuning δ → γ transformation types to relieve mechanical property degradation in a Co-free face-centered cubic metastable high-entropy alloy, Materialia. 11 (2020) 100738. [13] 范新虎,廖琪,曹新迪,彭华备,文玉华, 退火对Ni47Ti44Nb9合金激光焊接接头力学性能与形状记忆效应的影响, 稀有金属材料与工程 49 (2020) 355–360. [14] Q.C. Fan, M.Y. Sun, Y.Y. Wang, K.H. Sun, X.D. Cao, H.B. Peng, S.K. Huang, Y.H. Zhang, and Y.H. Wen, Phase Transformation and Recovery Stress of Ni47Ti44Nb9 Alloy During Constrained Heating and Cooling, Metall. Mater. Trans. A 51 (2020) 390–399. [15] W. Huang, Y. Wang, H. Peng, Y. Wen, Effect of up-quenching time on damping capacity in a ductile Cu-16.59Al-10.55Mn shape memory alloy, Mater. Res. Express. 6 (2019) 095703. [16] G. Wang, H. Peng, L. Xiang, J. Feng, Y. Wen, Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys, Metall. Mater. Trans. A. 50 (2019) 3478–3485. [17] D. Wang, X. Yang, Q. Liao, S.L. Wang, H.B. Peng, Y.H. Wen, Engineering twins and stacking faults of Co-Al-W shape memory alloy by a combination of casting and solution-treatment, Scr. Mater. 171 (2019) 73–77. [18] Q.C. Fan, M.Y. Sun, Y.H. Zhang, Y.Y. Wang, Y. Zhang, H.B. Peng, K.H. Sun, X.H. Fan, S.K. Huang, Y.H. Wen, Influence of precipitation on phase transformation and mechanical properties of Ni-rich NiTiNb alloys, Mater. Charact. 154 (2019) 148–160. [19]H. Peng, L. Yong, S. Wang, Y. Wen, Role of Annealing in Improving Shape Memory Effect of As-Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys, Metall. Mater. Trans. A 50 (2019) 3070–3079. [20] X. Yang, D. Wang, Q. Liao, S.L. Wang, B.J. Wu, H.B. Peng, Y.H. Wen, Effect of Annealing Temperature on Annealing Twins and Shape Memory Effect in Hot-Forged Co-23.9Ni-5.6Si Alloy, Metall. Mater. Trans. A 50 (2019) 3061–3069. [21] S. Bao, L. Zhang, H. Peng, Q. Fan, Y. Wen, Effects of heat treatment on martensitic transformation and wear resistance of as-cast 60NiTi alloy, Mater. Res. Express. 6 (2019) 086573. [22]H. Peng, J. Hua, B. Xu, Y. Wen, Fabrication of Ferrite-Coated Magnetic Fe–Mn–Si–Cr–Ni Alloy Utilizing Selective Oxidation of Mn Element, IEEE Trans. Magn. 55 (2019) 2900307. [23] D. Wang, X. Yang, Q. Liao, H. Peng, Y. Wen, Significant improvement of shape memory effect in Co-Ni-based alloys through Si alloying, J. Alloys Compd. 791 (2019) 501–507. [24] J. Feng, H. Zhao, H. Peng, G. Wang, L. Zhang, Y. Wen, Enhancement of strength-ductility combination in recovery-annealed Fe-Mn-C twinning-induced plasticity steels by Si alloying Enhancement of strength-ductility combination in recovery-annealed Fe-Mn-C twinning-induced plasticity steels by Si alloy, Mater. Res. Express 5 (2018) 066556. [25] H. Peng, J. Chen, Y. Wang, Y. Wen, Key Factors Achieving Large Recovery Strains in Polycrystalline Fe–Mn–Si-Based Shape Memory Alloys: A Review, Adv. Eng. Mater. (2018) 1700741. [26] L. Zhang, H. Peng, Q. Qin, Q. Fan, S. Bao, Y. Wen, Effects of annealing on hardness and corrosion resistance of 60NiTi film deposited by magnetron sputtering, J. Alloys Compd. 746 (2018) 45–53. [27] B. Qian, H. Peng, Y. Wen, A novel sandwich Fe-Mn damping alloy with ferrite shell prepared by vacuum annealing, Smart Mater. Struct. 27 (2018) 045005. [28] X. Yang, B.N. Qian, H.B. Peng, B.J. Wu, Y.H. Wen, Effect of W Contents on Martensitic Transformation and Shape Memory Effect in Co-Al-W Alloys, Metall. Mater. Trans. A 49 (2018) 1044–1052. [29] Q. Qin, H. Peng, Q. Fan, L. Zhang, Y. Wen, Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys, J. Alloys Compd. 739 (2018) 873–881. [30] H. Peng, G. Wang, S. Wang, J. Chen, I. MacLaren, Y. Wen, Key criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys, Mater. Sci. Eng. A 712 (2018) 37–49. [31] Y.N. Wang, J. Chen, H.B. Peng, Y.H. Wen, Shape Memory Effect Induced by Stress-induced α′ Martensite in a Metastable Fe–Cr–Ni Austenitic Stainless Steel, Acta Metall. Sin. (English Lett.) 30 (2017) 513–520. [32] H. Peng, P.A.N. Huang, T. Zhou, S. Wang, Reverse Shape Memory Effect Related to α → γ Transformation in a Fe-Mn-Al-Ni Shape Memory Alloy, Metall. Mater. Trans. A 48 (2017) 2132–2139. [33] B.J. Wu, X. Yang, H.B. Peng, Y.H. Wen, Role of thermal martensite in shape memory effect of CoAl and CoNi alloys, Trans. Nonferrous Met. Soc. China. 27 (2017) 382–389. [34] X. Yang, B.J. Wu, H.B. Peng, Y.H. Wen, Shape recovery increase in a Co-Al-W alloy realized by stress-induced hcp martensitic transformation after strengthening matrix, J. Alloys Compd. 695 (2017) 1045–1051. [35] J. Chen, H.B. Peng, Q. Yang, S.L. Wang, F. Song, Y.H. Wen, Effect of carbon content on shape memory effect of Fe-Mn-Si-Cr-Ni-based alloys at different deformation temperatures, Mater. Sci. Eng. A 677 (2016) 133–139. [36] J. Chen, J.W. Sun, Q. Yang, H.B. Peng, S.L. Wang, Y.H. Wen, Thermodynamic Explanation for the Large Difference in Improving Shape Memory Effect of Fe-Mn Alloys by Co and Si Addition, Adv. Eng. Mater. 18 (2016) 1426–1433. [37] Q. Yang, S.L. Wang, J. Chen, T.N. Zhou, H.B. Peng, Y.H. Wen, Strong heating rate-dependent deterioration of shape memory effect in up/step quenched Cu-based alloys: A ductile CuAlMn alloy as an example, Acta Mater. 111 (2016) 348–356. [38] H.B. Peng, G.X. Wang, Y.Y. Du, S.L. Wang, J. Chen, Y.H. Wen, A novel training-free processed Fe-Mn-Si-Cr-Ni shape memory alloy undergoing δ → γ phase transformation, Metall. Mater. Trans. A 47 (2016) 3277–3283. [39] P. Huang, H. Peng, S. Wang, T. Zhou, Y. Wen, Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy, Mater. Charact. 118 (2016) 22–28. [40] G.X. Wang, H.B. Peng, C.Y. Zhang, S.L. Wang, Y.H. Wen, Relationship among grain size, annealing twins and shape memory effect in Fe-Mn-Si based shape memory alloys, Smart Mater. Struct. 25 (2016) 075013. [41] G.X. Wang, H.B. Peng, P.P. Sun, S.L. Wang, Y.H. Wen, Effect of titanium addition on shape memory effect and recovery stress of training-free cast Fe-Mn-Si-Cr-Ni shape memory alloys, Mater. Sci. Eng. A 657 (2016) 339–346. [42] 宋帆, 张成燕, 王珊玲, 彭华备, 文玉华, 变形温度对固溶态Fe-Mn-Si基合金形状记忆效应的影响, 材料热处理学报. 36 (2015) 1–6. [43] R.L. Xiong, H.B. Peng, S.L. Wang, H.T. Si, Y.H. Wen, Effect of stacking fault energy on work hardening behaviors in Fe-Mn-Si-C high manganese steels by varying silicon and carbon contents, Mater. Des. 85 (2015) 707–714. [44] Y. Wen, H. Xiao, H. Peng, N. Li, D. Raabe, Relationship Between Damping Capacity and Variations of Vacancies Concentration and Segregation of Carbon Atom in an Fe-Mn Alloy, Metall. Mater. Trans. A 46 (2015) 4828–4833. [45] J.W. Sun, S.L. Wang, Z.W. Yan, H.B. Peng, Y.H. Wen, Origin of shape memory effect in Co–Ni alloys undergoing fcc⇌hcp martensitic transformation, Mater. Sci. Eng. A 639 (2015) 456–464. [46] J. Chen, H. Peng, S. Wang, Y. Du, Y. Wen, Remarkable Improvement of Shape Memory Effect in Austenitic Stainless Steel by Thermo-Mechanical Training, Adv. Eng. Mater. 17 (2015) 330–333. [47] J. Sun, S. Wang, Z. Yan, H. Peng, Y. Wen, Remarkable Improvement of Shape-Memory Effect in a Co-31Ni-3Si Alloy by Ausforming, Metall. Mater. Trans. A 46 (2015) 1550–1555. [48] R. Xiong, S. Wang, H. Peng, H. Si, Y. Wen, Occurrence Sequence of Deformation-Induced ε-Martensite and Mechanical Twinning in an Fe-17Mn-3Si-0.6C High Manganese Steel, Steel Res. Int. 86 (2015) 1252–1259. [49] C.Y. Zhang, F. Song, S.L. Wang, H.B. Peng, Y.H. Wen, Effect mechanism of Mn contents on shape memory of Fe-Mn-Si-Cr-Ni alloys, Acta Metall. Sin. 51 (2015) 201–208. [50] K. Zhao, H. Peng, X. Yang, G. Wang, Y. Wen, Improvement of Oxidation Resistance of Remelted Zone in an Al2O3-Forming Austenitic Stainless Steel by Annealing, Oxid. Met. 83 (2015) 273–290. [51] H.B. Peng, F. Song, S.L. Wang, C.Y. Zhang, Y.H. Wen, Role of carbon in improving the shape memory effect of Fe-Mn-Si-Cr-Ni alloys by thermo-mechanical treatments, Smart Mater. Struct. 24 (2015) 055010. [52] H.B. Peng, J. Chen, S.L. Wang, Y.H. Wen, Effect of carbon addition on recovery behavior of trained Fe-Mn-Si based shape memory alloys, Adv. Eng. Mater. 17 (2015) 205–210. [53] Y.H. Wen, H.B. Peng, H.T. Si, R.L. Xiong, D. Raabe, A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel, Mater. Des. 55 (2014) 798–804. [54] R. Xiong, H. Peng, H. Si, W. Zhang, Y. Wen, Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels, Mater. Sci. Eng. A 598 (2014) 376–386. [55] Y.Y. Du, H.B. Peng, J. Chen, Y.H. Wen, S.L. Wang, Microstructures of cast Fe-Mn-Si-Cr-Ni shape memory alloys characterized by metallography, Pract. Metallogr. 51 (2014) 107–126. [56] S. Wang, Q. Yang, X. Li, H. Peng, Y. Wen, Influence of recovery heating rate on shape memory effect in up-quenched Cu–Al–Mn alloy, Trans. Nonferrous Met. Soc. China. 24 (2014) 3196–3200. [57] Z.W. Yan, S.L. Wang, J.W. Sun, H.B. Peng, Y.H. Wen, Remarkable improvement of shape memory effect in a Co–31Ni–3Si alloy by training treatment, Mater. Sci. Eng. A 618 (2014) 41–45. [58] H. Peng, D. Yu, X. Zhang, S. Wang, Y. Wen, Fabrication of hollow nickel micro-spheres with high degree of hollowness by silicon powder-mixed spark erosion, Int. J. Mach. Tools Manuf. 85 (2014) 131–134. [59] Y.H. Wen, H.B. Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen, Y.Y. Du, Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries, Nat. Commun. 5 (2014) 4964. [60] H.B. Peng, Y.H. Wen, Y.Y. Du, J. Chen, Q. Yang, A new set of Creq and Nieq equations for predicting solidification modes of cast austenitic Fe-Mn-Si-Cr-Ni shape memory alloys, Metall. Mater. Trans. B 45 (2014) 6–11. [61] Q. Yang, Q. Yu, H. Peng, Y. Wen, Effects of thermally induced cyclic γ ↔ ε transformation on shape memory effect of a quenched FeMnSiCrNi alloy, Adv. Eng. Mater. 15 (2013) 697–703. [62] R. Ma, H. Peng, Y. Wen, L. Zhang, K. Zhao, Oxidation behavior of an austenitic stainless FeMnSiCrNi shape memory alloy, Corros. Sci. 66 (2013) 269–277. [63] H.B. Peng, Y.H. Wen, Y.Y. Du, Q.X. Yu, Q. Yang, Effect of manganese on microstructures and solidification modes of cast Fe-Mn-Si-Cr-Ni shape memory alloys, Metall. Mater. Trans. B 44 (2013) 1137–1143. [64]Huabei Peng, Yuhua Wen, Gang Liu, Chaoping Wang, Ning Li, A Role of α′ martensite introduced by thermo-mechanical treatment in improving shape memory effect of an Fe-Mn-Si-Cr-Ni alloy, Adv. Eng. Mater., 13 (2011) 388–394. [65] 彭华备,刘刚,文玉华,孙盼盼,李宁,基于马氏体区域化形成的免训练铸造Fe-Mn-Si-Cr-Ni形状记忆合金Ⅰ.构想与实现,金属学报,46 (2010) 282–287. [66] H.B. Peng, Y.H. Wen, B.B. Ye, N. Li, Influence of ageing after pre-deformation on shape memory effect in a FeMnSiCrNiC alloy with 13 wt.% Cr content, Mater. Sci. Eng. A 504 (2009) 36–39. [67]H.B. Peng, Y.H. Wen, L.R. Xiong, N. Li, Influence of initial microstructures on effectiveness of training in a FeMnSiCrNi shape memory alloy, Mater. Sci. Eng. A 497 2008 61–64.

推荐链接
down
wechat
bug