当前位置: X-MOL首页全球导师 国内导师 › 刘媛媛

个人简介

教育经历 2007-2012 美国伊利诺伊大学香槟分校 环境工程博士 2002-2005 中国科学院生态环境研究中心 环境工程硕士 1998-2002 南京大学 环境科学学士 工作经历 2017-至今 南京大学地球科学与工程学院 副教授 2013-2017 美国西北太平洋国家实验室 地球化学博士后 2005-2007 四川电力设计咨询有限责任公司 助理工程师 开授课程 《地质微生物学》 微生物积极参与并深刻地影响着地球表层各圈层的形成和演变。本课程着重介绍微生物的生长和演化过程、微生物代谢过程和能量传递过程、微生物参与的地球元素循环和地质过程。学生通过本课程的学习将掌握微生物学的基本原理、明确当前地质微生物研究热点、了解地质微生物的研究方法。 科研项目 (6)江苏省“双创计划”高校创新项目,2021-01至2023-12,50万元,在研,主持 (5)科技部国家重点研发(课题四),场地土壤-水污染多介质组合技术优化协同整治机制与验证,2020-2024,在研,参加 (4)科技部国家重点研发(课题二),有色金属矿区地下水重金属运移模拟及污染通量量化,2020-2023,在研,主持 (3)国家自然科学基金重大项目,“新生代大陆风化调控机制”第一课题“构造稳定区大陆风化动力学研究究”,2020-2024在研,参加 (2)国家自然科学基金面上项目,土壤-地下水环境微生物群落对铬迁移转化的影响机制和模型研究,2018-2021,在研,主持 (1)美国地质勘探局(USGS), Illinois State Water Resources Research Institute Program, Attachment and transport mechanisms of Cryptosporidium parvumoocysts in subsurface environments: A multi-scale study, 2009-2010,已结题,共同主持 荣誉奖励 2021年获“第18届侯德封矿物岩石地球化学青年科学家奖” 2017年入选“国家重大人才工程A类青年项目”

研究领域

重金属、碳、氮、铁元素的多元素耦合生物地球化学过程 土壤和地下水污染及修复过程中的生物地球化学机制及反应迁移行为的尺度效应 分子生物学、原位观测技术、多尺度流体反应器和数值模拟在地下环境污染物反应-迁移中的应用

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

(30) Yang X.†, Sun H., Yang Y., Liu Y., Yang X., “Recent progress in multi‐scale modeling and simulation of flow and solute transport in porous media”, Wiley Interdisciplinary Reviews: Water, 2021, DOI:10.1002/wat2.1561. (29) 刘媛媛,马腾飞,陈旸,杨晓帆,刘崇炫,“表生地球化学反应的尺度效应”, 矿物岩石地球化学通报, 2021,doi:10.19658/j.issn.1007-2801.2021.40.061. (28) Zhang L., Xiao J., Ji J., Liu Y.†, “Arsenate Adsorption on Different Fractions of Iron Oxides in the Paddy Soil from the Karst Region of China”, Bulletin of Environmental Contamination and Toxicology, 2021, 106, 126-133. (27) Kang Z.†, Chen J., Yuan D., He S., Li Y., Chang Y., Deng Y., Chen Y., Liu Y., Jiang G., Wang X., Zhang Q., “Promotion function of forest vegetation on the water & carbon coupling cycle in karst critical zone: insights from karst groundwater systems in South China” Journal of Hydrology, 2002, 590, 125246. (26) Song J., Wang Q., Zeng Y., Liu Y., Jiang W.†, “Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel”,Journal of Hazardous Materials, 2019, 375: 107-114. (25) Yang C., Zheng F., Liu Y., Zhang Y., Liu W., Zhang Q., Yang X.†“Modeling hydro-biogeochemical transformation of chromium in hyporheic zone: Effects of spatial and temporal resolutions” Journal of Hydrology, 2019, 579: 124152. (24) Zhou C., Liu Y., Liu C.†, Liu Y., Tfaily M. “Compositional Changes of Dissolved Organic Carbon during its Dynamic Desorption from Hyporheic Zone Sediments” Science of The Total Environment, 2019, 658: 16-23. (23) Yang C., Zhang Y., Liu Y., Yang X., Liu C.†, “Model-Based Analysis of the Effects of Dam-Induced River Water and Groundwater Interactions On Hydro-Biogeochemical Transformation of Redox Sensitive Contaminants in a Hyporheic Zone”, Water Resources Research, 2018, 54: 5973-5985. (22) Nelson K. L.†, Boehm A. B., Davies-Colley. R. J., Dodd M. C., Kohn T., Linden K. G., Liu Y., Maraccini P. A., McNeill K., Mitch W. A., Nguyen T. H., Parker K. M., Rodriguez R. A., Sassoubre L. M., Silverman A. I., Wigginton K. R., and Zepp R. G. “Sunlight-mediated Inactivation of Health-relevant Microorganisms in Water: A Review of Mechanisms and Modeling Approaches”, Environmental Science: Processes & Impacts, 2018, 20: 1089-1122. (21) Huang K., Liu Y., Yang C., Duan Y., Liu C.†, “Identification of Hydro-Biogeochemical Processes Controlling Seasonal Variations in Arsenic Concentrations within a Riverbank Aquifer at Jianghan Plain, China”, Water Resources Research, 2018, 54: 4294-4308. (20) Xu F., Liu Y.*, and Liu C.†, “A Generalized-Rate Model for Describing and Scaling Redox Kinetics in Sediments Containing Variable Redox-Reactive Materials”, Environmental Science & Technology, 2018, 52(9), 5268-5276. (19) Yan A., Liu C.†, Liu Y., and Xu F., “Effect of Ion Exchange on the Rate of Aerobic Microbial Oxidation of Ammonium in Hyporheic Zone Sediments”, Environmental Science and Pollution Research, 2018, 25: 8880-8887. (18) Liu Y., Liu C.†, Nelson W., Liang S., Xu F., Liu Y., Yan A., Zhong L., Thompson C., Fredrickson J., and Zachara J., “Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns”, Environmental Science & Technology, 2017, 51(9), 4877-4886. (17) Liu Y., Xu F.*, and Liu C.†, “Coupled Hydro-Biogeochemical Processes Controlling Cr Reductive Immobilization in Columbia River Hyporheic Zone”, Environmental Science & Technology, 2017, 51(3), 1508-1517. (Editor’s Choice) (16) Xu F., Liu Y.†, Zachara J., Bowden M., Kennedy D., Plymale A., and Liu C.†, “Redox Transformation and Reductive Immobilization of Cr(VI) in the Columbia River Hyporheic Zone Sediments”, Journal of Hydrology, 2017, 555, 278-287. (15) Yan Z., Liu C.†, Liu Y., Bailey V., “Multiscale Investigation on Biofilm Distribution and its Impact on Macroscopic Biogeochemical Reaction Rates”, Water Resources Research, 2017, 53: 8698-8714. (14) Li M, Gao Y., Qian W., Shi L., Liu Y., Nelsonb W., Nicorab C., Resch C., Thompson C., Yan S., Fredrickson J., Zacharab J., and Liu C.†, “Targeted Quantification of Functional Enzyme Dynamics in Environmental Samples for Microbially Mediated Biogeochemical Processes”, Environmental Microbiology Reports, 2017, 9(5): 512-521. (13) Yan Z., Liu C.†, Todd-Brown K. E., Liu Y., Bond-Lambert B., Bailey V., “Pore-scale Investigation on the Response of Heterotrophic Respiration to Moisture Conditions in Heterogeneous Soils”, Biogeochemistry, 2016, 131(1): 121-134. (12) Yan S., Liu Y., Liu C.†, Shi L., Shang J., Shan H., Zachara J., Fredrickson J., Kennedy D., Resch C., Thompson C. and Fansler S., “Nitrate Bioreduction in Redox-Variable Low Permeability Sediments”, Science of the Total Environment, 2016, 539: 185-195. (11) Liu Y., Liu C.†, Kukkadapu R., McKinley J., Zachara J., Plymale A., Miller M., Varga T. and Resch C., “99Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments”, Environmental Science & Technology, 2015, 49(22): 13403-13412. (10) Liu Y., Liu C.†, Zhang C., Yang X. and Zachara J. M., “Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates”, Geochimica et Cosmochimica Acta, 2015, 163: 140-155. (9) Liu Y.†, Dong S., Kuhlenschmidt M. S., Kuhlenschmidt T. B., Drnevich J. and Nguyen, T. H.,“Inactivation Mechanisms of Cryptosporidium parvum Oocysts by Solar Ultraviolet Irradiation”,Environmental Science: Water Research & Technology, 2015, 1: 188-198. (8) Liu C.†, Liu Y., Kerisit S. and Zachara J., “Pore Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials”, Reviews in Mineralogy and Geochemistry, 2015, 80: 191-216. (7) Zhong, L.†, Szecsody J., Truex M., Williams M., and Liu Y., “Ammonia gas transport and reactions in unsaturated sediment: Implications for use as an amendment to immobilize inorganic contaminants”. Journal of Hazardous Material, 2015,289: 118-129. (6) Liu Y., Zhang C., Hu D., Kuhlenschmidt M. S., Kuhlenschmidt T. B., Mylon S. E., Kong R., Bhargava, R. and Nguyen, T. H.†,“Role of Collector Alternating Charged Patches on Transport of Cryptosporidium Parvum Oocysts in a Patchwise Charged Heterogeneous Micromodel”, Environmental Science & Technology, 2013, 47(6): 2670-2678. (5) Pan G.†, Dan W., and Liu Y., “Photocatalytic degradation pathways and adsorption modes of H-acid in TiO2suspensions”, Chinese Science Bulletin, 2012, 57(10): 1102-1108. (4) Liu Y., Zhang C., Hilpert M., Kuhlenschmidt M. S., Kuhlenschmidt T. B. and Nguyen, T. H.†, “Transport of Cryptosporidium Parvum Oocysts in a Silicon Micromodel”, Environmental Science & Technology, 2012, 46(3): 1471-1479. (3) Liu Y., Kuhlenschmidt M. S., Kuhlenschmidt T. B. and Nguyen, T. H.†,“Composition and Conformation of Cryptosporidium Parvum Oocysts WallSurface Macromolecules and Their Effect on Adhesion Kinetics of Oocysts on Quartz Surface”, Biomacromolecules,2010, 11(8): 2109-2115. (2) Janjaroen D., Liu Y., Kuhlenschmidt M. S., Kuhlenschmidt T. B. and Nguyen, T. H.†,“Role of Divalent Cations on Deposition Kinetics of Cryptosporidium parvum Oocysts on Natural Organic Matter Surfaces”,Environmental Science & Technology, 2010, 44(12): 4519-4524. (1) Liu Y., Janjaroen D., Kuhlenschmidt M. S., Kuhlenschmidt T. B. and Nguyen, T. H.†,“Deposition of Cryptosporidium ParvumOocysts on Natural Organic Matter Surfaces: Microscopic Evidence for Secondary Minimum Deposition in a Radial Stagnation Point Flow Cell”, Langmuir, 2009, 25: 1594-1605.

推荐链接
down
wechat
bug