当前位置: X-MOL首页全球导师 国内导师 › 谭思超

个人简介

谭思超,男,1979年2月出生,中共党员,工学博士,教授,博士生导师,哈尔滨工程大学核科学与技术学院院长,黑龙江省教学名师,任教育部核能安全技术工程研究中心主任,教育部核动力安全与仿真技术省部共建协同创新中心主任,黑龙江省核学会理事长,《International Journal of Advanced Nuclear Reactor Design and Technology》副主编,《原子能科学与技术》、《哈尔滨工程大学学报》编委等。主要从事反应堆热工安全、小型反应堆技术、核工程领域的人工智能应用技术研究,承担国家重点研发计划、国家自然科学基金等项目50余项。发表 SCI 检索论文110余篇,EI 检索论文150余篇。主讲课程获教育部来华留学英语授课品牌课、全国工程硕士专业学位研究生在线重点课程、国家研究生智慧教育平台课程、省研究生课程思政示范课程、省研究生精品课程、省一流本科课程。获国家级教学成果二等奖2项,省部级教学成果奖2项,省部级科技奖励6项,获黑龙江省杰出青年基金支持以及核能行业协会青年优秀人物奖、黑龙江省青年科技奖等。 教育经历 1997年9月-2001年7月,哈尔滨工程大学核工程专业,工学学士学位 2001年9月-2003年7月,哈尔滨工程大学核科学与技术专业,工学硕士学位 2003年9月-2006年3月,哈尔滨工程大学核科学与技术专业,工学博士学位 工作经历 2006.4-2007.8,哈尔滨工程大学核科学与技术学院 讲师 2006.7-2009.6,西安交通大学核科学与技术博士后流动站 博士后 2007.9-2009.8,哈尔滨工程大学核科学与技术学院 副教授 2009.5-2010.5,美国德州农工大学(Texas A&M University)核工程系 访问学者 2009.9至今,哈尔滨工程大学核科学与技术学院 教授 2012.12-2014.12,哈尔滨工程大学人才工作办公室主任兼人力资源处副处长 2014.12-2016.6,哈尔滨工程大学人力资源处处长 2016.1-2016.12,黑龙江省哈尔滨市阿城区,区委常委、副区长 2016.6-2019.11,哈尔滨工程大学人力资源处处长兼人才工作办公室主任 2019.11-2022.6,哈尔滨工程大学核科学与技术学院党委书记 2022.6至今,哈尔滨工程大学核科学与技术学院院长

研究领域

反应堆热工安全 小型反应堆技术 核工程领域的人工智能应用技术

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

截止2023年10月,发表高水平期刊论文200余篇,其中SCI检索论文110余篇,EI检索论文150余篇。 英文期刊论文: 第一作者(通讯)SCI论文 2023 [1] Wei T., Zhang B., Wang S., et al. Numerical analysis of passive safety injection driven by natural circulation in floating nuclear power plant[J]. Energy, 2023, 263: 126077. [2] Li X., Qi C., Cheng K., et al. Application of particle image velocimetry on velocity distribution in 5× 5 rod bundle channel under rolling motion[J]. Annals of Nuclear Energy, 2023, 186: 109755. [3] Xing L., Zhao F., Dong X., et al. Numerical investigation about radius ratio effect of helical tubes in the heat exchanger[J]. Nuclear Engineering and Design, 2023, 414: 112525. [4] Ming Y., Tian R., Zhao F., et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235: 121302. [5] Xu S, Yue J, Zhang J, et al. Numerical analysis on flow distribution of nuclear reactor core inlet under ocean conditions[J]. Nuclear Engineering and Design, 2023, 414: 112576. [6] Zhu J, Lin Y, Cheng H, et al. Numerical simulation of ultrasonic velocity in wet steam[J]. Nuclear Engineering and Design, 2023, 414: 112578.、 [7] Wang X, Dong X, Li Z, et al. Transient characteristics analysis of residual heat removal system for Helium-Xenon mixture cooled small reactor system[J]. Nuclear Engineering and Design, 2023, 410: 112387. [8] Dai Y, Peng L, Juan Z, et al. An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks[J]. Journal of Electrical Engineering & Technology, 2023: 1-16. [9] Wang X, Zhao F, He Y, et al. Development and verification of helium–xenon mixture cooled small reaction system[J]. Progress in Nuclear Energy, 2023, 160: 104679. [10] Lu R, Zhao F, Li Z, et al. Numerical investigation of thermal stress in the fuel element of high-temperature air-cooled nuclear reactor[J]. Progress in Nuclear Energy, 2023, 157: 104595. [11] Mai D, Zhao F, Zhao Y, et al. Separation characteristics analysis and optimization design of AP1000 wave type separator[J]. Progress in Nuclear Energy, 2023, 157: 104571. [12] Li Y, Li H, Zhang Y, et al. Experimental study on condensation and acoustic characteristics of steam underwater injection[J]. Frontiers in Energy Research, 2023, 11: 1027624. [13] Li Y, Li H, Zhang Y, et al. Experimental study on condensation and acoustic characteristics of steam underwater injection[J]. Frontiers in Energy Research, 2023, 11: 1027624. [14] Ala A A, Tan S, Qiao S, et al. Simulation of the effect of partial and total blockage of a sub-channel on two-phase flow through a 5 x 5 square rod bundle[J]. Progress in Nuclear Energy, 2023, 155: 104514. 2022 [15] Liu Q., Lu R., Qiao Y., et al. Analysis of the correction factors and coupling characteristics of multi-droplet evaporation[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123138. [16] Yu X., Zhang Y., Qiao S., et al. Experimental study on the structure of the velocity boundary layer in a 3× 3 rod bundle channel[J]. Experimental Thermal and Fluid Science, 2022, 137: 110685. [17] Yu X., Zhang Y., Li S., et al. Simultaneous measurement of the structures of the velocity and thermal boundary layers in the rod bundle channel[J]. International Journal of Heat and Mass Transfer, 2022, 192: 122906. [18] Yuan D., Deng J., Zhu J., et al. Simultaneous temperature field investigations of blockage accidents in a narrow rectangular channel by experiments and simulations[J]. Annals of Nuclear Energy, 2022, 171: 109007. [19] Ning K., He Y., Huang D., et al. Modelling research on the control scheme and control characteristic of a small gas-cooled reactor[J]. Progress in Nuclear Energy, 2022, 147: 104189. [20] Wang W, Zhou Y, Liang B, et al. Electrochemical behavior and corrosion rate prediction study of alloy 690[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 171-176. [21] Liao H, Wang X, Ma J, et al. Characteristic analysis of natural circulation residual heat removal in small reactor[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 187-195. [22] Ju W, Dong X, Lu R, et al. Heat transfer performance of high temperature and high velocity hydrogen flow and analysis of blockage characteristics[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2022, 4(4): 205-216. [23] Ju W, Wu Y, Lin S, et al. Visual experimental study of droplet impinging on liquid film and analysis of droplet evolution characteristics[J]. Experimental and Computational Multiphase Flow, 2022: 1-9. [24] Li X, Cheng K, Huang T, et al. Research on false alarm detection algorithm of nuclear power system based on BERT-SAE-iForest combined algorithm[J]. Annals of Nuclear Energy, 2022, 170: 108985. [25] Wei T, Chen J, Zhang B, et al. Effects of ocean conditions on water level measurement of pressurizer[J]. Annals of Nuclear Energy, 2022, 169: 108913. [26] Wen J, Tian R, Tan S, et al. Numerical simulation of gas holdup in nocoalescence media of industrial-scale bubble column[J]. Progress in Nuclear Energy, 2022, 146: 104172. [27] Han R, Zhang A M, Tan S, et al. Interaction of cavitation bubbles with the interface of two immiscible fluids on multiple time scales[J]. Journal of Fluid Mechanics, 2022, 932: A8. [28] Ming Y, Liu K, Zhao F, et al. Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system[J]. Energy Conversion and Management, 2022, 253: 115184. [29] Wang P, Qi P, Yuan D, et al. Experimental research of nine parallel plane jets in non-blocking and blocking conditions[J]. Annals of Nuclear Energy, 2022, 166: 108747. [30] Li X, Cheng K, Huang T, et al. Research on short term prediction method of thermal hydraulic transient operation parameters based on automated deep learning[J]. Annals of Nuclear Energy, 2022, 165: 108777. 2021 [31]Yuan D, Deng J, Zhang X, et al. Experimental investigation of turbulent flow under different Reynolds numbers and blockage ratios in a heated rectangular channel[J]. Annals of Nuclear Energy, 2021, 164: 108608. [32] Li X, Cheng K, Huang T, et al. Equivalence analysis of simulation data and operation data of nuclear power plant based on machine learning[J]. Annals of Nuclear Energy, 2021, 163: 108507. [33] He Y, Cheng K, Qiu Z, et al. Research on power flattening method and neutron characteristic analysis of a megawatt-class space gas-cooled fast reactor[J]. Annals of Nuclear Energy, 2021, 161: 108456. [34] Meng T, Cheng K, Zhao F, et al. Dynamic simulation of the gas-cooled space nuclear reactor system using SIMCODE[J]. Annals of Nuclear Energy, 2021, 159: 108293. [35] Huang D, Ning K, Zhao F, et al. Study on heat transfer characteristics of liquid droplet radiator: With vs without inter-droplets coupling[J]. Annals of Nuclear Energy, 2021, 156: 108199. [36] Lu R, Qiu Z, He Y, et al. Investigation of fluid-structure Interaction of fuel element in high speed and high temperature air cooled reactor[J]. Annals of Nuclear Energy, 2021, 160: 108400. [37] Li X, Qi P, Li D, et al. Visualization experimental study on axial flow-induced vibration of slender cantilever rod for reactor[J]. Annals of Nuclear Energy, 2021, 160: 108357. [38] Wei H, Quintanilla V, Chen Y, et al. The numerical simulation and analysis of turbulent flow behavior in 5× 5 fuel rod bundle with split-type mixing vane[J]. Annals of Nuclear Energy, 2021, 159: 108324. [39] Yuan D, Deng J, Han R, et al. Experimental study on flow structures of central blockage accidents in a rectangular channel using PIV and POD[J]. Annals of Nuclear Energy, 2021, 153: 108037. [40] Qiao S, Zhong W, Wang S, et al. Numerical simulation of single and two-phase flow across 90° vertical elbows[J]. Chemical Engineering Science, 2021, 230: 116185. [41] Eltayeb A, Tan S, Ala A A, et al. The study of the influence of slug density on the mixing performance in the reactor vessel, using PLIF experiment and FLUENT simulation[J]. Progress in Nuclear Energy, 2021, 131: 103558. 2020 [42] Lu R, Li Z, Zhao J, et al. Numerical investigation of heat transfer characteristics of high-speed and high-temperature air cooled open-cycle reactor[J]. Applied Thermal Engineering, 2020, 179: 115542. [43] Li X, Qi P, Tan S, et al. Experimental study of transient friction characteristics and velocity distribution of pulsatile flow in rod bundles[J]. Annals of Nuclear Energy, 2020, 140: 107124. [44] Qi P, Li X, Qiu F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047. [45] Abbati Z, Chen J, Cheng K, et al. An experimental study of two-phase flow instability in a multi-loop natural circulation system[J]. Annals of Nuclear Energy, 2020, 139: 107269. [46] Meng T, Cheng K, Zhao F, et al. Computational flow and heat transfer design and analysis for 1/12 gas-cooled space nuclear reactor[J]. Annals of Nuclear Energy, 2020, 135: 106986. [47] Liang R, Wang D, Liu J, et al. Effect of debris combination on flow resistance of fuel assemblies[J]. Annals of Nuclear Energy, 2020, 149: 107788. [48] Ala A A, Tan S, Eltayeb A, et al. Simulation of low-Re pulsatile flow through bare 5 x 5 square arrayed rod bundles[J]. Progress in Nuclear Energy, 2020, 129: 103487. [49] Wang D, Chang B, Zhang T, et al. Evaluation of chemical effects on fuel assembly blockage following a loss of coolant accident in nuclear power plants[J]. International Journal of Energy Research, 2020, 44(7): 5488-5499. [50] Li Y, He C, Qiu J, et al. Numerical study on transient response characteristics of natural circulation in coupled loops under ocean condition[J]. Progress in Nuclear Energy, 2020, 124: 103248. [51] Qi P, Wang P, Hao S, et al. Experimental study of flow structures in a large range downstream the spacer grid in a 5× 5 rod bundle using TR-PIV[J]. International Journal of Heat and Fluid Flow, 2020, 84: 108619. [52] Zahraddeen A, Chen J, Cheng K, et al. Preliminary experimental validation of multi-loop natural circulation model based on RELAP5/SCDAPSIM/MOD 4.0[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2020, 2: 25-33. 2019 [53] Meng T, Zhao F, Cheng K, et al. Neutronics analysis of megawatt-class gas-cooled space nuclear reactor design[J]. Journal of Nuclear Science and Technology, 2019, 56(12): 1120-1129. [54] Zhang Q, Su J, Du W, et al. Experimental study on mixing phenomenon inside reactor down-comer under single-loop injection using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 117: 103046. [55] Zhao F, Yan X, Bo H, et al. Application of droplet motion and phase change model in containment spray system[J]. Annals of Nuclear Energy, 2019, 131: 123-137. [56] Ala A A, Tan S, Eltayeb A, et al. Experimental study of velocity components of low-RE pulsatile flow through bare rod bundle[J]. Annals of Nuclear Energy, 2019, 131: 221-232. [57] Qi P, Li X, Li X, et al. Experimental study on the resistance characteristics of the rod bundle channel with spacer grid under low-frequency pulsating flows[J]. Annals of Nuclear Energy, 2019, 131: 80-92. [58] Zhao F, Liu Q, Yan X, et al. Droplet motion and phase change model with two-way coupling[J]. Journal of Thermal Science, 2019, 28: 826-833. [59] Qi P, Li X, Li X, et al. Experimental investigation of the turbulent flow in a rod bundle channel with spacer grids[J]. Annals of Nuclear Energy, 2019, 130: 142-156. [60] Zhao F, Liu Q, Yu L, et al. Ratio analysis of two mechanisms of static droplet evaporation driven by pressure difference[J]. Experimental and Computational Multiphase Flow, 2019, 1: 116-129. [61] Ala A A, Tan S, Eltayeb A, et al. Experimental study on sudden contraction and split into the inlets of two parallel rectangular jets[J]. Experimental Thermal and Fluid Science, 2019, 104: 272-283. [62] Du W, Liu Y, Yuan H, et al. Experimental investigation on natural convection and thermal stratification of IRWST using PIV measurement[J]. International journal of Heat and mass transfer, 2019, 136: 128-145. [63] Eltayeb A, Tan S, Qi Z, et al. PLIF experimental validation of a FLUENT CFD model of a coolant mixing in reactor vessel down-comer[J]. Annals of Nuclear Energy, 2019, 128: 190-202. [64] Meng T, Cheng K, Zeng C, et al. Preliminary control strategies of megawatt-class gas-cooled space nuclear reactor with different control rod configurations[J]. Progress in Nuclear Energy, 2019, 113: 135-144. [65] Cheng K, Meng T, Zhao F, et al. Development and validation of a thermal hydraulic transient analysis code for offshore floating nuclear reactor based on RELAP5/SCDAPSIM/MOD3. 4[J]. Annals of Nuclear Energy, 2019, 127: 215-226. [66] Cheng K, Meng T, Tan S, et al. Experimental study on natural circulation flow instability in parallel boiling channels under low pressure[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1126-1136. [67] Zeng C, Tan S, Qiao S, et al. A simplified method for calculating the heat rejection from a rectangle droplet sheet[J]. International Journal of Heat and Mass Transfer, 2019, 132: 762-771. [68] Li X, Qi P, Zhao T, et al. LIF study of temporal and spatial fluid mixing in an annular downcomer[J]. Annals of Nuclear Energy, 2019, 126: 220-232. [69] Liu Z, Wang J, Tan S, et al. Multi-objective optimal design of the nuclear reactor pressurizer[J]. International Journal of Advanced Nuclear Reactor Design and Technology, 2019, 1: 1-9. [70] Meng T, Yan X, Zhao F, et al. Application of droplet motion and evaporation model in fuel spray in the constant volume bomb[J]. Journal of Thermal Science and Technology, 2019, 14(1): JTST0003-JTST0003. [71] Li X, Mi Z, Tan S, et al. Experimental investigation of fluid mixing inside a rod bundle using laser induced fluorescence[J]. Progress in Nuclear Energy, 2019, 110: 90-102. 2018 [72] Ala A A, Tan S, Eltayeb A, et al. Effects of low-Re pulsatile flow on friction characteristics in bare square array rod bundles[J]. Annals of Nuclear Energy, 2018, 120: 630-641. [73] Li X, Mi Z, Tan S, et al. PIV study of velocity distribution and turbulence statistics in a rod bundle[J]. Annals of Nuclear Energy, 2018, 117: 305-317. [74] Yuan H, Tan S, Du W, et al. Heterogeneous bubble nucleation model on heated surface based on free energy analysis[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1198-1209. [75] Cheng K, Meng T, Tian C, et al. Experimental investigation on flow characteristics of pressure drop oscillations in a closed natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1162-1171. [76] Chen X, Gao P, Tan S, et al. An experimental investigation of flow boiling instability in a natural circulation loop[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1125-1134. 2017 [77] Zhuang, N., Tan S., and H. Yuan, 2017, Flow resistance of low-frequency pulsatile turbulent flow in mini-channels. International Journal of Heat and Fluid Flow, v 65: p. 21-32. [78] Chen H, Gao P, Tan S, et al. Online sequential condition prediction method of natural circulation systems based on EOS-ELM and phase space reconstruction[J]. Annals of Nuclear Energy, 2017, 110: 1107-1120. 2016 [79] Yuan H, Tan S, Feng L, et al. Heterogeneous bubble nucleation on heated surface from insoluble gas[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1185-1192. [80] Zhuang N, Tan S, Yuan H. The friction characteristics of low-frequency transitional pulsatile flows in narrow channel[J]. Experimental Thermal and Fluid Science, 2016, 76: 352-364. [81] Wang X, Wang R, Du S, et al. Flow visualization and mixing quantification in a rod bundle using laser induced fluorescence[J]. Nuclear Engineering and Design, 2016, 305: 1-8. [82] Yu Z, Yuan H, Chen C, et al. Two-phase flow instabilities of forced circulation at low pressure in a rectangular mini-channel[J]. International Journal of Heat and Mass Transfer, 2016, 98: 438-447. [83] Yuan H, Tan S, Zhuang N, et al. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion[J]. Annals of Nuclear Energy, 2016, 87: 527-536. [84] Chen C, Gao P, Tan S, et al. Boiling heat transfer characteristics of pulsating flow in rectangular channel under rolling motion[J]. Experimental Thermal and Fluid Science, 2016, 70: 246-254. [85] Yu Z, Tan S, Yuan H, et al. Experimental investigation on flow instability of forced circulation in a mini-rectangular channel under rolling motion[J]. International journal of heat and mass transfer, 2016, 92: 732-743. [86] Yuan H, Tan S, Wen J, et al. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia[J]. International Journal of Thermal Sciences, 2016, 99: 152-160. 2015 [87]Chen C, Gao P, Tan S, et al. Effect of rolling motion on two-phase frictional pressure drop of boiling flows in a rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 83: 125-136. [88] Chen C, Gao P, Tan S, et al. Forced convective boiling heat transfer of water in vertical rectangular narrow channel[J]. Nuclear Engineering and Design, 2015, 291: 133-144. [89] Chen C, Gao P, Tan S, et al. Theoretical calculation of the characteristics of annular flow in a rectangular narrow channel[J]. Annals of Nuclear Energy, 2015, 85: 259-270. [90] Yu Z, Lan S, Yuan H, et al. Temperature fluctuation characteristics in a mini-rectangular channel under rolling motion[J]. Progress in Nuclear Energy, 2015, 81: 203-216. [91] Li S, Tan S, Xu C, et al. Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion[J]. Annals of nuclear energy, 2015, 76: 390-400. [92] Li S, Tan S, Yuan H. Theoretical study on temperature oscillation of a parallel-plate in pulsating flow condition[J]. International Journal of Heat and Mass Transfer, 2015, 81: 28-32. 2014-2009 [93] Yuan H, Tan S, Zhuang N, et al. Theoretical analysis of wall thermal inertial effects on heat transfer of pulsating laminar flow in a channel[J]. International Communications in Heat and Mass Transfer, 2014, 53: 14-17. [94] Li S, Tan S, Gao P, et al. Experimental research of bubble number density and bubble size in narrow rectangular channel under rolling motion[J]. Nuclear Engineering and Design, 2014, 268: 41-50. [95] Zhuang N, Tan S, Yuan H, et al. Flow resistance characteristics of pulsating laminar flow in rectangular channels[J]. Annals of Nuclear Energy, 2014, 73: 398-407. [96] Zhang W, Tan S, Gao P, et al. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2014, 65: 1-9.. [97] Tan S, Wang Z, Wang C, et al. Flow fluctuations and flow friction characteristics of vertical narrow rectangular channel under rolling motion conditions[J]. Experimental thermal and fluid science, 2013, 50: 69-78. [98] Xing D, Yan C, Sun L, et al. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions[J]. Annals of Nuclear Energy, 2013, 53: 109-119. [99] Wang C, Gao P, Tan S, et al. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J]. Experimental Thermal and Fluid Science, 2013, 44: 490-497. [100] Wang C, Gao P, Tan S, et al. Experimental study of friction and heat transfer characteristics in narrow rectangular channel[J]. Nuclear engineering and design, 2012, 250: 646-655. [101] Estrada-Pérez C E, Hassan Y A, Tan S. Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry[J]. Review of Scientific Instruments, 2011, 82(7). [102] Gao P, Liu T, Yang T, et al. Pressure drop fluctuations in periodically fluctuating pipe flow[J]. Journal of Marine Science and Application, 2010, 9(3): 317-322. [103] Tan S, Su G H, Gao P. Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition[J]. Applied Thermal Engineering, 2009, 29(14-15): 3160-3168. [104] Tan S, Su G H, Gao P. Experimental study on two-phase flow instability of natural circulation under rolling motion condition[J]. Annals of Nuclear Energy, 2009, 36(1): 103-113. [105] Tan S., G. H. Su, Gao Pu-zhen. Heat transfer model of single-phase natural circulation flow under a rolling motion condition. Nuclear Engineering and Design, Volume 239, Issue 10, October 2009, Pages 2212-2216. 中文期刊论文: [1] 谭思超,张红岩,庞凤阁,高璞珍. 单相-两相自然循环过渡点的实验研究. 哈尔滨工程大学学报. 2005. (03) [2] 谭思超, 张红岩, 庞凤阁, 高璞珍. 摇摆运动下单相自然循环流动特点. 核动力工程. 2005. (06) [3] 谭思超,庞凤阁. 摇摆运动引起的波动与自然循环密度波型脉动的叠加. 核动力工程. 2005. (02) [4] 谭思超, 庞凤阁, 高璞珍. 自然循环过冷沸腾流动不稳定性实验研究. 核动力工程. 2006. (01) [5] 谭思超, 庞凤阁, 高璞珍. 低压两相自然循环流动不稳定实验研究. 哈尔滨工程大学学报. 2006. (02) [6] 谭思超, 庞凤阁, 高璞珍. 摇摆对自然循环传热特性影响的实验研究. 核动力工程. 2006. (05) [7] 谭思超, 高文杰, 高璞珍, 苏光辉. 摇摆运动对自然循环流动不稳定性的影响. 核动力工程. 2007. (05) [8] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环流动的实验和理论研究. 哈尔滨工程大学学报. 2007. (11) [9] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环复合型脉动的实验研究. 原子能科学技术. 2008. (11) [10] 谭思超, 高璞珍, 秦胜杰, 黄彦平, 苏光辉. 低流速自然循环过冷沸腾汽泡脱离点实验研究. 核科学与工程. 2008. (04) [11] 谭思超, 高璞珍, 苏光辉. 摇摆运动条件下自然循环温度波动特性. 原子能科学技术. 2008. (08) [12] 谭思超, 高璞珍, 苏光辉. 摇摆运动下系统空间布置对自然循环流动特性的影响. 西安交通大学学报. 2008. (11) [13] 张文超, 谭思超, 高璞珍, 张虹, 张红岩. 摇摆条件下自然循环流动不稳定性的混沌特性研究. 原子能科学技术. 2012. (06) [14] 张文超, 谭思超, 高璞珍. 摇摆参数对自然循环系统混沌脉动影响分析. 哈尔滨工程大学学报. 2012. (06) [15] 刘宇生, 谭思超, 高璞珍, 袁其斌. 矩形通道内脉动层流流场特性理论研究. 原子能科学技术. 2012. (11) [16] 张文超, 谭思超, 高璞珍, 张虹, 张红岩. 摇摆条件下自然循环流动不稳定性非线性演化特性研究. 原子能科学技术. 2012. (11) [17] 刘宇生, 谭思超, 高璞珍, 张虹. 矩形通道内脉动层流阻力特性实验研究. 原子能科学技术. 2013. (02) [18] 李少丹, 谭思超, 许超, 高璞珍, 徐建军. 窄通道内不凝结气体对过冷沸腾汽泡行为的影响. 原子能科学技术. 2013. (03) [19] 王占伟, 谭思超, 张文超, 高璞珍, 张虹, 杜思佳. 摇摆运动下自然循环高含汽率流动特性研究. 原子能科学技术. 2013. (03) [20] 张文超, 谭思超, 高璞珍. 基于Lyapunov指数的摇摆条件下自然循环流动不稳定性混沌预测. 物理学报. 2013. (06) [21] 张文超, 谭思超, 高璞珍. 摇摆条件下自然循环系统流量混沌脉动的检验与预测. 物理学报. 2013. (14) [22] 谭思超, 王占伟, 兰述, 张虹. 摇摆运动下窄矩形通道单相瞬变流动时均阻力特性研究. 核动力工程. 2013. (S1) [23] 张川, 谭思超, 赵佳宁, 刘宇生, 高璞珍, 张虹. 窄矩形通道内脉动流过渡特性实验研究. 原子能科学技术. 2013. (09) [24] 张连胜, 张红岩, 谭思超, 张文超, 高璞珍, 张虹. 摇摆运动下单相自然循环核热耦合特性研究. 原子能科学技术. 2013. (10) [25] 张连胜, 谭思超, 赵翠娜, 高璞珍, 张虹. 摇摆对自然循环核热耦合平均功率的影响. 原子能科学技术. 2013. (11) [26] 文静, 谭思超, 付学宽, 孟涛, 宋禹林. 横向震荡条件下水中气泡速度特性实验研究. 核动力工程. 2016. (01) [27] 袁红胜, 谭思超, 庄乃亮, 唐凌虹, 张川, 张虹. 矩形通道内加减速条件下流态转捩特性研究. 核动力工程. 2014. (06) [28] 张川, 谭思超, 赵佳宁, 袁其斌, 张虹. 非稳态条件下平板通道内层流速度分布研究. 原子能科学技术. 2014. (01) [29] 李少丹, 谭思超, 高璞珍, 许超, 高风. 窄通道内的汽泡核化以及滑移汽泡的影响. 原子能科学技术. 2014. (05) [30] 宋禹林, 谭思超, 付学宽. 晃荡对气泡上升运动影响的数值研究. 核动力工程. 2014. (S1) [31] 李少丹, 谭思超, 高璞珍, 许超, 胡健, 郑强. 周期力场下窄通道内汽泡滑移实验研究. 哈尔滨工程大学学报. 2014. (08) [32] 李少丹, 林原胜, 谭思超, 高璞珍. 双色平面激光诱导荧光法测温技术研究. 核动力工程. 2014. (04) [33] 李少丹, 谭思超, 许超, 高璞珍, 庄乃亮. 流动沸腾条件下窄通道内的汽泡生长和冷凝. 原子能科学技术. 2014. (S1) [34] 张晓玉, 谭思超, 余志庭, 宋禹林, 张虹. 摇摆参数对自然循环下波谷型脉动的影响. 原子能科学技术. 2015. (01) [25] 谭思超, 赵富龙, 李少丹, 高璞珍. VOF模型界面传质与体积传质的转换方法. 哈尔滨工程大学学报. 2015. (03) [36] 李少丹, 谭思超, 高璞珍, 许超. 摇摆运动对窄通道内汽液界面参数的影响. 核动力工程. 2015. (02) [37] 宋禹林, 谭思超, 付学宽, 李小辉. 晃荡条件下气泡上升速度特性研究. 哈尔滨工程大学学报. 2015. (06) [38] 王啸宇, 谭思超, 李少丹, 岳冲. 基于激光诱导荧光法的空泡份额测量. 原子能科学技术. 2015. (11) [39] 郭嘉,赵富龙,宁可为等.基于子通道模型的超临界二氧化碳燃料组件热工特性分析[J].原子能科学技术,2023,57(09):1740-1749. [40] 齐超,李鑫,谭思超等.摇摆条件下棒束通道流场特性研究[J].核动力工程,2023,44(S1):35-39. [41] 魏天一,张彪,李东阳等.海洋条件下小型堆稳压器液位智能预测研究[J].哈尔滨工程大学学报,2023,44(09):1590-1596. [42] 刘宇生,谭思超,靖剑平等.ACME台架PRHR管线破口试验自然循环现象研究[J].核技术,2023,46(06):95-103. [43] 谭思超,李桐,刘永超等.关于人工智能在核能领域应用的若干思考[J].核动力工程,2023,44(02):1-8. [44] 赵富龙,董想,赵渊等.液滴撞击空间辐射换热器壁面演化特性[J].哈尔滨工程大学学报,2022,43(12):1677-1682. [45] 宁可为,宋帅,赵富龙等.月基核电源堆芯设计及物理热工特性分析[J].核动力工程,2022,43(S2):118-124. [46] 董显敏,宁可为,赵富龙等.堵流工况下氦氙混合气体流动换热特性[J].哈尔滨工程大学学报,2022,43(12):1706-1711. [47] 张振国,李小畅,谭思超等.钠冷快堆直流蒸汽发生器跨尺度耦合分析[J].原子能科学技术,2022,56(11):2354-2364. [48] 袁东东,邓坚,谭思超等.矩形通道边缘堵塞和中心堵塞事故实验研究[J].核动力工程,2022,43(06):66-72. [49] 张永豪,于晓勇,刘卢果等.矩形通道速度边界层可视化实验研究[J].原子能科学技术,2023,57(03):503-513. [50] 刘宇生,王庶光,李东阳等.堆芯补水箱内热工水力现象识别与研究[J].核安全,2022,21(04):66-73. [51] 李翔宇,程坤,谭思超等.基于Adaboost算法的核电站故障诊断方法[J].核动力工程,2022,43(04):118-125. [52] 魏天一,张彪,谭思超等.海洋条件下安注水箱晃荡特性实验研究[J].原子能科学技术,2023,57(01):84-93. [53] 乔守旭,钟文义,谭思超等.基于PCA-GA-SVM的竖直下降两相流流型预测[J].核动力工程,2022,43(03):85-93. [54] 李兴,王强龙,谭思超等.脉动流下定位格架下游时均流场分布特性研究[J].核动力工程,2022,43(03):46-52. [55] 李旭鹏,钟文义,乔守旭等.基于AFSA-RF的两相流型图扩展技术[J].原子能科学技术,2022,56(08):1584-1592. [56] 李翔宇,程坤,黄涛等.核电站瞬态运行参数数据压缩与复原方法[J].哈尔滨工程大学学报,2021,42(12):1720-1725. [57] 卢瑞博,宁可为,邱志方等.空气流动换热数值计算模型适用性分析[J].哈尔滨工程大学学报,2021,42(12):1733-1738. [58] 何宇豪,孟涛,王宪礴等.兆瓦级空间反应堆辐射特性分析[J].哈尔滨工程大学学报,2021,42(12):1726-1732. [59] 朱雁凌,王啸宇,游尔胜等.双钩波形板汽水分离器疏水钩优化研究[J].原子能科学技术,2021,55(10):1780-1787. [60] 于晓勇,祁沛垚,乔守旭等.5×5棒束通道局部阻塞流场实验研究[J].原子能科学技术,2021,55(11):1976-1983. [61] 邱枫,祁沛垚,于晓勇等.加减速流条件下棒束通道阻力特性研究[J].原子能科学技术,2022,56(07):1285-1292. [62] 李兴,王强龙,邱金荣等.加/减速流动下棒束通道内速度分布和湍流特性研究[J].原子能科学技术,2021,55(09):1692-1699. [63] 买丹婕,方华伟,黄笛等.空间反应堆系统液体层辐射换热特性分析[J].原子能科学技术,2021,55(S2):203-212. [64] 陈明鹏,张彪,谭思超等.窄矩形多通道流动传热特性数值分析[J].核动力工程,2021,42(S1):47-52. [65] 程坤,邱志方,陈宝文等.海洋条件下浮动反应堆运行特性的数值模拟研究[J].核安全,2021,20(02):67-72. [66] 黄笛,李仲春,余霖等.氦氙混合比例对堆内通道流动换热特性影响[J].哈尔滨工程大学学报,2021,42(05):745-750. [67] 郝思佳,乔守旭,祁沛垚等.堵塞条件下紧密栅湍流交混特性研究[J].原子能科学技术,2021,55(05):829-839. [68] 郝思佳,祁沛垚,钟文义等.堵塞条件下棒束通道的流场与阻力特性[J].哈尔滨工程大学学报,2021,42(02):308-316. [69] 乔守旭,钟文义,谭思超等.竖直下降两相流相界面结构输运特性[J].原子能科学技术,2021,55(02):229-236. [70] 孟涛,夏陈超,赵富龙等.空间反应堆堆芯流动换热特性优化研究[J].载人航天,2020,26(05):624-629+670. [71] 祁沛垚,邓坚,谭思超等.基于PIV技术的低雷诺数下棒束通道流场研究[J].核动力工程,2021,42(01):18-22. [72] 祁沛垚,李兴,邓坚等.脉动流条件下棒束通道阻力特性研究[J].原子能科学技术,2021,55(05):840-848. [73] 乔守旭,谭思超,高璞珍等.中美核学科硕士留学生培养对比研究——以宾州州立大学与哈尔滨工程大学为例[J].教育现代化,2020,7(56):1-5. [74] 祁沛垚,郝思佳,苏建科等.脉动流下棒束通道内流场与湍流特性的PIV实验研究[J].原子能科学技术,2021,55(01):142-150. [75] 郝思佳,李兴,祁沛垚等.5×5棒束通道内流动转捩特性研究[J].原子能科学技术,2020,54(12):2376-2384. [76] 明杨,易经纬,方华伟等.直接布雷顿循环气冷反应堆系统运行特性分析[J].原子能科学技术,2020,54(07):1168-1175. [77] 米争鹏,谭思超,邹思远等.棒束通道内温度场分布特性研究[J].原子能科学技术,2020,54(09):1644-1651. [78] 乔守旭,谭思超,高璞珍.核能工程硕士留学生课程建设探索与实践[J].中国电力教育,2020(04):59-60. [79] 何宇豪,孟涛,卢瑞博等.空间核反应堆电源研究进展[J].上海航天,2019,36(06):126-133. [80] 刘鹏亮,李鑫,李东阳等.燃料相关组件棒流致振动可视化实验研究[J].哈尔滨工程大学学报,2019,40(08):1427-1432.

学术兼职

教育部核能安全技术工程研究中心主任 教育部核动力安全与仿真技术省部共建协同创新中心主任 黑龙江省核动力装置性能与设备重点实验室副主任 中国能源学会专家委员会副主任 黑龙江省核学会理事长 中国核学会反应堆热工流体分会副秘书长/常务理事 国家能源核电软件重点实验室学术委员会委员 热能动力系统技术重点实验室学术委员会学术委员 核安全与先进核能技术工业和信息化部重点实验室学术委员会委员 陕西省先进核能工程研究中心技术委员会委员 广东省核电安全企业重点实验室学术委员会委员 广东省先进核能人工智能与虚拟现实工程技术研究中心工程技术委员会委员 《International Journal of Advanced Nuclear Reactor Design and Technology(JANDT)》副主编 《原子能科学技术》编委 《哈尔滨工程大学学报》编委

推荐链接
down
wechat
bug