当前位置: X-MOL首页全球导师 国内导师 › 郑兴

个人简介

郑兴,1980年11月出生,湖北赤壁人,主要从事船舶与海洋工程领域的水动力力学、极限工况下流固耦合性能、高速船舶耐波性能、破碎波浪与结构相互作用、海上可再生能源利用等方面的研究工作。发表学术论文70余篇,其中第一作者或通讯作者发表SCI、EI论文50余篇,出版学术专著3部。承担国家自然科学基金3项,承担高技术船舶子课题1项,承担科技部重点研发计划子课题1项,承担总装预研基金1项,装发领域基金2项,参与国家自然科学基金重点项目2项。 教育经历 1999.8-2003.7 哈尔滨工程大学 船舶工程学院 本科 2003.9-2005.6 哈尔滨工程大学 船舶工程学院 硕士研究生 2004.9-2010.3 哈尔滨工程大学 船舶工程学院 博士研究生 工作经历 2003.7-2006.8 哈尔滨工程大学 船舶工程学院 助教 2006.9-2011.11 哈尔滨工程大学 船舶工程学院 讲师 2011.12-2019.5 哈尔滨工程大学 船舶工程学院 副教授 2019.6-至今 哈尔滨工程大学 船舶工程学院 教授 2008.1-2008. 3 英国伦敦大学学院(UCL) 机械工程系 访问学者 2011.1-2011.12 英国伦敦城市大学 访问学者 2015.5-2015. 9 英国曼彻斯特大学 访问学者 招生信息 招收 船舶与海洋工程结构物设计制造和力学两个专业的硕士研究生 招收 力学专业的博士研究生 专利成果 郑兴等,一种多功能入水砰击实验投放装置,ZL 201610429105.8 郑兴等,一种高速入水砰击试验装置,ZL 201710810482.0 出版著作 郑兴等,无网格计算方法及其在水波问题中的应用,哈尔滨工程大学出版社,2017.3 郑兴等,考虑气弹性影响的激励线理论及其风机气动性能研究,哈尔滨工程大学出版社,2019.6 郑兴等,完全不可压缩SPH方法及其简单应用,哈尔滨工程大学出版社,2019.6 奖励 水平轴潮流能水轮机水动力特性及机理研究,黑龙江省科技技术二等奖,排名第3,2019,12. 海洋结构物水动力砰击理论与计算方法研究,中国海洋工程科学技术二等奖,排名第4, 2020,6.

研究领域

(1)无网格计算技术及其船海动力学方面的应用。 面对破碎波浪与结构物砰击作用这一船舶与海洋工程领域难题,提出基于Rankine源降阶的不可压缩SPH方法,彻底解决无网格计算方法的数值耗散和压力伪震荡现象。相关研究成果发表在计算流体力学顶级期刊Journal of Computational Physics上。此外还针对无网格方法中的一些核心问题,提出了重要改进措施,例如Poisson方程的高阶离散格式,快速自由表面粒子判断方法,高阶压力导数项的求解格式,无镜像粒子固壁边界求解格式,高精度二阶导数粒子求解格式,冰-水-船接触算法,破碎情况下的流体和固体边界条件,粒子方法的D-P准则修正方法等等。所得到的改进无网格计算方法已经成功应用到高速船舶喷溅波的模拟和优化,高速物体的入水砰击问题,高傅汝数钝体的喷溅阻力预报,冰-水-船的挤压破坏和阻力预报等。 (2)考虑气弹性变形的风机气动性能和浮式风机耦合运动的快速算法及其应用。 将激励线理论与OpenFOAM相结合,能够模拟考虑气弹性变形的单风机和多风机的气动性能和耦合运动响应,在同样精度的情况下该改进方法只需主流商业软件计算时间的1/10。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

近5年发表主要学术论文: [1] Ningbo Zhang, Xing Zheng*, Qingwei Ma, Study on wave-induced kinematicresponses and flexures of ice floe by Smoothed Particle Hydrodynamics, Computers and Fluids, 2019, 189, 46-59, (SCI 000472694600005 ) [2]Zheng Xing, Ma Qingwei, Shao Songdong, Hu Zhenhong*, Gui Qinqin An Improved 2D+t ISPH Approach for High-Speed Vessel Waves, Journal of Coastal Research,2019, Published on line (SCI) [3]Zhang Ningbo, Zheng Xing*, Ma Qingwei, Hu Zhenhong, A numerical study on ice failure process and ice-ship interactions by Smoothed Particle Hydrodynamics, International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2):796-808 (SCI)(EI 20191806863179) [4] Xing Zheng*, Yi You, A comparative Study on Violent Sloshing with Complex Baffles Using the ISPH Method, Applied Sciences, 2018, 8(6): 904 (SCI: 000436488000063) [5] Xing Zheng*, Qingwei Ma, Songdong Shao. Study on SPH Viscosity Term Formulation, Applied Sciences, 2018, 8(2): 249. (SCI: 000427510300101) [6] Zhang Ningbo, Zheng Xing*, Ma Qingwei, Duan Wenyang, Khayyer Abbas, Lv Xipeng, Shao Songdong. A Hybrid Stabilization Technique for Simulating Water Wave – Structure Interaction by Incompressible Smoothed Particle Hydrodynamics (ISPH) Method, Journal of Hydro-environment Research,2018,18:77-94 (SCI: 000425072700007) [7] Zhang Ningbo, Zheng Xing*, Ma Qingwei, Updated Smoothed Particle Hydrodynamics for Simulating Bending and Compression Failure Progress of Ice, Water, 2017, (SCI: 000416798300068) [8] ZhengXing*, Lv Xipeng, Ma Qingwei, Duan Wenyang, Khayyer Abbas, Shao Songdong. An improved solid boundary treatment for wave-float interactions using ISPH method, InternationalJournal of Naval Architecture and Ocean Engineering, 2018, 10(3): 329-347 (SCI: 000434000300009) [9] Zheng Xing, Shao Songdong, Khayyer Abbas, Duan Wenyang*, Ma Qingwei, Liao Kangping, Corrected First-Order Derivative ISPH in Water Wave Simulations, Coastal EngineeringResearch, 2017, 59(1): 1750010 (SCI:000397122800010, 冲击因子:0.887,JCR3区) [10] Zheng Xing*, Ma Qingwei, Shao Songdong, Khayyer Abbas, Modelling ofViolent Water Wave Propagation and Impact by Incompressible SPH withFirst-Order Consistent Kernel Interpolation Scheme, Water, 2017, 9(6):400(SCI: 000404559900038, 冲击因子:1.832,JCR2区) [11]Chen Yunsai, Zheng Xing*, Jin Shanqin, Duan Wenyang. A correctedsolid boundary treatment method for Smoothed Particle Hydrodynamics ,China Ocean Engineering. 2017, 31(2):238-247(SCI:000399895100013,冲击因子:0.621,JCR4区) [12]ZhengXing*, Ma Qingwei, DuanWenyang. Comparison of different iterative schemes for ISPH based on Rankine source solution. International Journal of Naval Architecture and Ocean Engineering,2017, 9(4):390-403.(SCI:000406574900004,冲击因子:0.606,JCR3区) [13]ZhengXing*, Ma Qing-wei, DuanWen-yang. Incompressible SPH based on Rankin source solution for violent flow simulation. Journal of Computational Physics, 2014, 276:291-341(SCI:000341310100012,冲击因子:2.485,JCR1区) [14]ZhengXing*, Ma Qing-wei,Duan Wen-yang. Comparative study of different SPH schemes in simulating violent water wave impact flows, China Ocean Engineering,2014, 28(6):791-806(SCI:000346650600006,冲击因子:0.407,JCR4区) [15]ZhengXing*, Duan Wen-yang, Ma Qing-Wei. A new scheme for identifying free surface particles in improved SPH.China Science : Physics, Mechanics & Astronomy, 2012, 55(8):1454-1463(SCI:000306176600021,冲击因子:1.169 JCR3区) [16] Yu, Ziying,Zheng, Xing*,Ma, Qingwei. Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes. Applied Sciences, 2018, 8(3): 434 (SCI: 000428369400117 JCR3区) [17] Huang, Xing,Chen, Wu, Hu, Zhe, Zheng, Xing, Jin, Shanqin,Zhang, Xiaoying, Application Research of an Efficient and Stable Boundary Processing Method for the SPH Method, 2019, 11(5): 1110 (SCI:000472680400240,冲击因子:2.524, JCR2区)

推荐链接
down
wechat
bug