当前位置: X-MOL首页全球导师 国内导师 › 饶政华

个人简介

中南大学供热、通风与空调工程专业学士,中南大学制冷及低温工程专业工学硕士,中南大学与美国 Missouri University of Science and Technology 联合培养工程热物理专业工学博士。 2007年至2009年获国家留学基金委的资助赴美留学。一直从事动力工程及工程热物理、制冷与空调相关学科的教学研究工作,参与完成了国家863项目、自然科学基金项目、省部级重大课题和国际合作项目的研究工作。目前主持湖南省自然科学基金项目、教育部科研专项资金项目、美国通用汽车公司等企业委托合作项目。 近年来主要开展了太阳能热发电、金属及复合材料加工过程的传热传质、超临界CO2流动传热等研究,研究成果发表于国内外权威学术期刊以及国际学术会议,其中SCI收录论文30余篇。 讲授课程 1、 本科生课程:太阳能热利用原理与技术、太阳能热利用课程设计 2、 研究生课程:能源系统工程(英文) 科研项目 1)湖南省自然科学基金项目. 太阳能接收器内熔盐纳米流体粒子微运动及高温传热特性研究. 2)湖南省自然科学基金项目. 超临界CO2布雷顿循环太阳能发电系统及其高效集热机理研究. 3)流程工业节能技术湖南省重点实验室开放研究基金. 超临界CO2布雷顿循环太阳能热发电系统性能研究与优化. 4)美国通用汽车公司合作项目. Modeling of Compression Molding and Molding-Induced Distortion of Long Fiber Thermoplastic Composites. 5)美国通用汽车公司合作项目,Modeling and Characterization of Weld Discrepancies and Microstructures in Laser Brazing and Welding of Aluminum Alloys for Automotive Applications. 6)中央高校基本科研业务费专项资金资助项目. 可再生能源建筑关键技术研究. 专利 [1] CN110822928A 用于炭素单体炉的蓄热式余热利用装置、系统及控制方法 [2] CN110428302A 一种区域分布式热水共享系统及控制方法 [3] CN108124408B 基于热管技术的数据中心浸没式液冷机柜 [4] CN108882658A 浸没式液冷和循环风冷结合的服务器机柜散热系统 [5] CN201210063648.4 平板式太阳能热水器装置 [6] CN201510742601.4 太阳能集热器和空气源热泵联合供热水系统及控制方法 [7] CN201210125709.5 平板热管太阳能光伏光热复合集热器及其制作工艺 [8] CN201310098915.6 新风换气机用平板全热换热芯体 [9] CN201310098875.5 新风换气机用导板膜式全热换热芯体 [10] CN201410725581.5 干衣机及其控制方法 [11] CN201410802371.1 热泵热水机 [12] CN201410802832.5 空气源热泵热水机 学术奖励 1、2012年湖南省优秀博士学位论文 2、2010年湖南省自然科学优秀学术论文二等奖 3、2014年第七届全国大学生节能减排社会实践与科技竞赛一等奖(指导教师) 4、2017年第十届全国大学生节能减排社会实践与科技竞赛二等奖(指导教师) 5、2019年第十二届全国大学生节能减排社会实践与科技竞赛一等奖(指导教师)

研究领域

1、 新能源技术:太阳能热利用技术,地热能利用技术,能源利用系统仿真与优化 2、 工程热物理与能源利用的基础问题:材料加工过程模拟与分析(传热/传质、流动、热应力分析),微纳尺度传递,超临界流体流动与传热

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Z.H. Rao, S. T. Bao, X.P. Liu, A.T. Robert, S. M. Liao, Estimating allowable energy flux density for the supercritical carbon dioxide solar receiver: A service life approach. Applied Thermal Engineering 182 (2021) 116024. [2] Rao Z, Ou L, Wang Y, et al. A self-piercing-through riveting method for joining of discontinuous carbon fiber reinforced nylon 6 composite. Composite Structures, 2020:111841. [3] Yaqiong Wang, Zhenghua Rao, Fengjiang Wang. Heat evolution and nugget formation of resistance spot weldingunder multi-pulsed current waveforms. The International Journal of Advanced Manufacturing Technology (2020) 111:3583–3595 [4] Zheng S, Rao Z, Liao S. Structural and thermal analysis of an innovative baking furnace for carbon anode production. Int J Energy Res. 2020;1–15. [5] Wang, Yaqiong; Rao, Zhenghua; Liu, Jiaxing, et al. An optimized control strategy for integrated solar and air-source heat pump water heating system with cascade storage tanks. ENERGY AND BUILDINGS, 2020, 210: 109766. [6] Rao, Zhenghua; Xue, Tianchen; Huang, Kaixin; Liao, Shengming. Multi-objective optimization of supercritical carbon dioxide recompression Brayton cycle considering printed circuit recuperator design. ENERGY CONVERSION AND MANAGEMENT, 2019, 201: 112094. [7] Liu J W, Zeng P W, Rao Z H, et al. Transport phenomena and keyhole evolution process in laser welding of stainless steel. Journal of Central South University, 2019, 26(8):2088-2099. [8] Chen R, Rao Z H, Liao S M. Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data. Journal of Central South University, 2019, 26(8):2136-2148. [9] Li, Min; Zhou, Cheng; Rao, Zhenghua. Hourly 50-year simulations of ground-coupled heat pumps using high-resolution analytical models. ENERGY CONVERSION AND MANAGEMENT, 2019, 193: 15-24. [10] Liu, Xiao-jun; Liao, Sheng-ming; Rao, Zheng-hua. An input-output model for energy accounting and analysis of industrial production processes: a case study of an integrated steel plant. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2018, 25(5): 524-538 [11] Chen, Rui; Rao, Zhenghua; Liao, Shengming. Determination of key parameters for sizing the heliostat field and thermal energy storage in solar tower power plants. ENERGY CONVERSION AND MANAGEMENT, 2018, 177: 385-394 [12] J.W. Liu, Z.H. Rao, S.M. Liao, H.L. Tsai. Numerical investigation of weld pool behaviors and ripple formation for a moving GTA welding under pulsed currents, International Journal of Heat and Mass Transfer, 2015, 91, 990-1000. [13] Yuqiang Li,Gang Liu,Zhenghua Rao,Shengming Liao,Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver,Renewable Energy,2015,75:257-265. [14] Yuqiang Li,Shengming Liao,Zhenghua Rao,Gang Liu,A dynamic assessment based feasibility study of concentrating solar power in China,Renewable Energy,2014,69:34-42. [15] Z.H. Rao, S.M. Liao. A numerical investigation of turbulent convective heat transfer of supercritical CO2 in vertical mini tubes,Progress in Computational Fluid Dynamics,2014,14(3):166-176. [16] J.W. Liu, Z.H. Rao, S.M. Liao, P-C Wang. Modeling of transport phenomena and solidification cracking in laser spot bead-on-plate welding of AA6063-T6 alloy. Part I—the mathematical model. International Journal of Advanced Manufacturing Technology, 2014, 73(9-12):1705-1716. [17] J.W. Liu, Z.H. Rao, S.M. Liao, P-C Wang. Modeling Of Transport Phenomena And Solidification Cracking In Laser Spot Bead-On-Plate Welding Of Aa6063-T6 Alloy. Part II—Simulation Results And Experimental Validation[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1-4):285-296. [18] Z.H. Rao, J.W. Liu, P-C Wang, Y.X. Li, S.M. Liao. Modeling of Cold Metal Transfer Spot Welding of AA6061-T6 Aluminum Alloy and Galvanized Mild Steel. Journal of Manufacturing Science & Engineering, 2014, 136(5):2729-2737. [19] Z.H. Rao, J. Zhou, H.L. Tsai. Determination of equilibrium wire-feed-speeds for stable gas metal arc welding. International Journal of Heat and Mass Transfer, 2012, 54, 55 (2012) 6651–6664. [20] X. L. Cao, Z. H. Rao, S. M. Liao. Laminar convective heat transfer of supercritical CO2 in horizontal miniature circular and triangular tubes. Applied Thermal Engineering, 2011, 31(14-15): 2374-2384. [21] Z.H. Rao, S.M. Liao, H.L. Tsai. Modeling of hybrid laser-GMA welding: A review and challenges. Science and Technology of Welding and Joining, 2011, 16(4): 300-305. [22] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai. Modeling of the transport phenomena in GMAW using argon–helium mixtures. Part I – The arc. International Journal of Heat and Mass Transfer, 2010, 53(25/26), 5707–5721. [23] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai. Modeling of the transport phenomena in GMAW using argon–helium mixtures. Part II – The metal. International Journal of Heat and Mass Transfer, 2010, 53(25/26), 5722–5732. [24] Z.H. Rao, S.M. Liao, H.L. Tsai. Effect of Shielding Gas Composition on Arc Plasma and Metal Transfer in Gas Metal Arc Welding. Journal of Applied Physics, 2010, 107(4), 044902. [25] Z.H. Rao, J. Zhou, S.M. Liao, H.L. Tsai. Three-dimensional modeling of transport phenomena and their effect on the formation of ripples in gas metal arc welding. Journal of Applied Physics, 2010, 107(5), 054905. [26] C.H. Lin, Z.H. Rao, L. Jiang, W.J. Tsai, P.H. Wu, C.W. Chien, H.L. Tsai. Investigations of femtosecond–nanosecond dual-beam laser ablation of dielectrics. Optics Letters, 2010, 35(14): 2490-2492. [27] Z.H. Rao, S.M. Liao, H.L. Tsai, P. C. Wang, R. Stevenson. Mathematical Modeling of Electrode Cooling in Resistance Spot Welding. Welding Journal, 2009, 88(5): 111s-119s. [28] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai. Determination of Equilibrium Wire Feed Speeds for a Stable GMAW Process. In: 2008 ASME International Mechanical Engineering Congress and Exposition (Proceedings of IMECE2008), 2008, Boston, Massachusetts, USA. 67799. [29] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai. Study the Shielding Gas Effect on the Metal Transfer and Weld Pool Dynamics in GMAW. In: 2009 ASME Summer Heat Transfer Conference, July, 2009, San Francisco, California USA. 88407. [30] Z.H. Rao, C.H. Lin, L. Jiang, W.J. Tsai, P.H. Wu, C.W. Chien, H.L. Tsai. Investigations of Femtosecond-Nanosecond Dual-Beam Laser Ablation of Dielectrics. In: ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference (Proceedings of MNHMT2009), December, 2009, Shanghai, China. 18188. [31] C.H. Lin, Z.H. Rao, L. Jiang, W.J. Tsai, P.H. Wu, C.W. Chien, H.L. Tsai. Enhancement of ablation efficiency by a femto/nano-second dual-beam micromachining system. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Vol. 7585, January, 2010, San Francisco, California, USA. 758501. [32] Z.H. Rao, J. Hu, S.M. Liao, H.L. Tsai. Study the Shielding Gas Effects on Transport Phenomena in GMAW Arc. In: The 20th International Symposium on Transport Phenomena, July, 2009, Victoria BC, Canada. [33] 刘敏; 饶政华; 刘继雄; 廖胜明. 能流分布对超临界CO2腔式太阳能吸热器热-力特性的影响. 太阳能学报, 2020, 41 (4): 92-98 [34] 黄凯欣,饶政华,廖胜明.超临界CO2太阳能吸热器许用能流密度研究. 太阳能学报,2018,39(1): 44-50. [35] 饶政华,廖胜明. 新能源科学与工程专业课程体系研究. 中国大学教学,2015年第3期:44-47. [36] 高如超,饶政华,李芸霄,廖胜明. 脉冲GTAW熔池行为和焊缝成形的三维数值模拟 [J]. 中南大学学报, 2013, 44(11): 4712-4719. [37] 刘仙萍, 饶政华, 廖胜明. 太阳能光伏/光热复合集热器能量转换性能的数值模拟[J]. 中南大学学报:自然科学版, 2013, 44(6):2554-2560. [38] 李大鹏, 饶政华, 张翔等. 长沙地区多功能地源热泵系统的模拟与分析[J]. 中南大学学报:自然科学版, 2013, 44(3). [39] 南剑, 饶政华, 刘骁浚等. 基于系统节能的冶金过程监测与模拟技术研究进展[J]. 过程工程学报, 2014, (4). [40] 饶政华, 廖胜明. 二氧化碳微通道气体冷却器的数值仿真与结构优化.化工学报, 2005, 56(9):1721-1726. [41] 饶政华, 廖胜明. 超临界二氧化碳管内湍流流动和传热的数值模拟. 流体机械, 2005, 33(1): 71-75. [42] 饶政华, 廖胜明. 超临界二氧化碳水平细微管内层流流动与换热的数值模拟. 热科学与技术, 2005, 4(2):113-117. [43] 饶政华, 廖胜明. 超临界CO2在水平三角细微管内层流对流换热的数值模拟. 制冷学报, 2006, 27 (5): 44-47.

推荐链接
down
wechat
bug