当前位置: X-MOL首页全球导师 国内导师 › 谭婷

个人简介

教育背景 2012.08-2015.12 弗吉尼亚理工大学 Virginia Tech (美国) 博士 2011.08-2012.05 莱斯大学 Rice University (美国) 博士交流 2008.09-2011.06 重庆大学 (中国) 硕士 2004.09-2008.06 重庆大学 (中国) 学士 工作经历 2021.01 至今 上海交通大学 机械与动力工程 副教授 2018.05-2020.12 上海交通大学 机械与动力工程 助理教授 2016.05-2018.04 哈尔滨工业大学 力学 博士后 科研项目 2020.07-2023.06 上海市科学技术委员会自然科学基金面上项目,20ZR1427300,压电-摩擦电复合型能量采集系统驰振机理及低速海流发电技术研究,20万,主持 2020-2021 机械系统与振动国家重点实验室自主课题,MSVZD202003,尾流致振压电能量采集机理及实验研究,40万,主持 2020-2023 上海市科学技术委员会“科技创新行动计划”基础重点研究项目,基于多源数据融合的流固耦合高效精细求解研究,参与(负责50万/100万) 2019.01-2021.12 国家自然科学基金青年科学基金项目,11802071,压电自参数吸振-俘能器动力学设计与性能研究,25万,主持 2018.07-2021.12 上海交通大学启动经费,力学超材料动力学设计,15万,主持 2019.01-2020.12 汽车动力与传动系统湖南省重点实验室开放基金课题,VPTS201901,基于压电自参数吸振器的汽车设备被动控制研究,2万,主持 2018.07-2020.07 上海交通大学机械与动力工程学院启动经费,压电声学超材料能量采集器动力学设计及实验研究,20万,主持 2016.11-2018.05,中国博士后科学基金面上项目,2016M601421,悬臂梁式压电振动能量采集器机电解耦建模及优化设计,5万,主持 2012.08-2016.03, 美国自然科学基金 (总统科技奖)项目,1150397, Advancing Treatment of Pelvic Floor Disorders through Discoveries in Elasticity and Viscoelasticity of Uterosacral and Cardinal Ligaments,主要完成人 教学工作 本科专业核心课程,机械动力学与振动,负责1.5/3学分,48学时 本科通识核心课程,自然界中的混沌与分岔,2学分,32学时 本科毕业设计,同步电机转子磁性测试与定子匹配的研究 本科PRP项目,基于局域共振声学超材料的电源墙设计和实验研究 本科PRP项目,摩擦纳米发电机实验研究 本科PRP项目,波浪能量采集器动力学设计和实验研究 软件版权登记及专利 谭婷, 李天润, 王哲敏, 董兴建, 胡蓝. 一种基于包含铣削角度理论模型的铣削颤振智能识别方法 谭婷, 胡新宇. 一种风致振动压电能发电以及风速测量装置 颜志淼, 谭婷. 基于风致振动的串错列压电能采集器测试装置和测试方法 荣誉奖励 2022 瑞士巴索奖学金(陈莹花) 2022 博士研究生国家奖学金(王哲敏) 2022 ASME AMTIS Outstanding Contribution Award This award promotes, advances, and recognizes the efforts of researchers towards higher standards of excellence in integration of adaptive materials and systems. 2021 机械与动力工程学院潍柴动力奖学金(王哲敏) 2021 硕士研究生国家奖学金(李天润) 2021 上海交通大学机械与动力工程学院百年党史校史知识竞赛一等奖 2020 上海交通大学优秀班主任 2020 上海交通大学机械与动力工程学院优秀班主任 2018 国际先进材料协会青年科学家奖章 2011-2015 中国留学基金委政府奖学金 2015 弗吉尼亚理工大学Amir Chand and Dewki Bai Batra 奖

研究领域

(1)柔性传感器:压电/摩擦电自供能传感、可穿戴器件、人机交互 (2)机械/力学/折纸超材料:柔性传感、生物识别、生物医疗器件 (3)声学/弹性超材料/声子晶体:语音交互、拓扑保护、医学成像 (4)人工肌肉:软体驱动、软体机器人、仿生扑翼飞行器 (5)复杂系统动力学与非线性动力学

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

【2023】 [64] Z Wang, Y Chen, R Jiang, Y Du, S Shi, S Zhang, Z Yan, Z Lin, T Tan*, Broadband omnidirectional piezoelectric–electromagnetic hybrid energy harvester for self-charged environmental and biometric sensing from human motion, Nano Energy, 2023, 108526, https://doi.org/10.1016/j.nanoen.2023.108526. [63] Y Liu, D Zhao, Z Yan, W Sun, P Guo, T Tan*. Reprogrammable acoustic metamaterials for multiband energy harvesting. Engineering Structures, 288, 2023, 116207. [62] H Xiao, T Li, L Zhang, WH Liao, T Tan, Z Yan. Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation. Mechanical Systems and Signal Processing, 185 (2023) 109808. 【2022】 [61] W Sun, K Zhong, Y Liu, H Xiao, D Zhao, Z Yan, T Tan*. Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting. Composites Communications 35 (2022) 101342 [60] G Shi, T Tan, Y Xiao, W Zhang, Y Zhu, Z Yan. Symmetry-breaking self-sustained oscillation in nonlinear two-phase flow. International Journal of Heat and Mass Transfer, 199, 2022, 123480. [59] C Huang, T Tan, Z Wang, X Nie, S Zhang, F Yang, Z Lin, B Wang, Z Yan. Bistable programmable origami based soft electricity generator with inter-well modulation. Nano Energy, 103, Part A, 2022, 107775. [58] C Huang, T Tan, X Hu, F Yang, Z Yan. Bio-inspired programmable multi-stable origami. Appl. Phys. Lett. 121, 051902 (2022) [57] L Zhang, T Tan, Z Yue, Z Yan. Topological imbalanced phononic crystal with semi-enclosed defect for high-performance acoustic energy confinement and harvesting. Nano Energy, 2022, 100: 107472. [56] X Nie, S Pei, T Tan, Z Yan, Z Yan. Nonlinear 1:2 internal resonance response of L-shaped piezoelectric energy harvester under the influence of electrical damping. International Journal of Mechanical Science, 2022, 225: 107365. [55] C Huang, T Tan, Z Wang, S Zhang, F Yang, Z Lin, Z Yan. Origami dynamics based soft piezoelectric energy harvester for machine learning assisted self-powered gait biometric identification. Energy Conversion and Management, 2022, 263: 115720. [54] Z. Wang, Y. Du, T. Li, Z. Yan, T. Tan*. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization. Energy Conversion and Management, 2022, 261: 115638. [53] Z. Yan, H. Xiao, Y. Liu, T Tan*. Band-gap dynamics and programming for low-frequency broadband acoustic metamaterial. Composite Structures, 2022, 14: 115535. [52] G. Shi, T. Tan, S. Hu, Z. Yan. Hydrodynamic piezoelectric energy harvesting with topological strong vortex by forced separation. International Journal of Mechanical Science, 2022, 223: 107261. [51] X. Nie, X. Can, L. Wang, T. Tan, Z-T Yan, Z. Yan, X. Liu. Nonlinear analysis of the internal resonance response of an L-shaped beam structure considering quadratic and cubic nonlinearity. Journal of Statistical Mechanics-Theory and Experiment, 2022, Accepted [50] K. Sun, X. Nie, T. Tan, Z. Yu, Z. Yan. Coupled vortex-induced modeling for spatially large-curved beam with elastic support. International Journal of Mechanical Science, 214 (2022) 106903. 【2021】 [49] Z. Yan, G. Shi, J. Zhou, L. Wang, L. Zuo, T. Tan*. Wind piezoelectric energy harvesting enhanced by elastic-interfered wake-induced vibration. Energy Conversion & Management, 249 (2021) 114820. [48] Tianrun Li, Zhemin Wang, Hanjie Xiao, Zhimiao Yan, Cheng Yang, Ting Tan*. Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial. Nano Energy, 90 (2021) 106523. [47] Donglin Zou, Gaoyu Liu, Zhushi Rao, Ting Tan, Wenming Zhang, Wei-Hsin Liao*. Design of a Multi-stable Piezoelectric Energy Harvester with Programmable Equilibrium Point Configurations. Applied Energy, 302 (2021) 117585. [46] Zhemin Wang, Tianrun Li, Yu Du, Zhimiao Yan, Ting Tan*. Nonlinear broadband piezoelectric vibration energy harvesting enhanced by inter-well modulation. Energy Conversion & Management, 2021, 246 (2021) 114661. [45] Zhemin Wang, Yu Du, Tianrun Li, Zhimiao Yan, Ting Tan*. A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design. Applied Energy, 303 (2021) 117577. [44] Ting Tan, Zhemin Wang, Liang Zhang, Wei-Hsin Liao, Zhimiao Yan. Piezoelectric autoparametric vibration energy harvesting with chaos control feature. Mechanical Systems and Signal Processing, 2021, 161: 107989. [43] Ting Tan, Lei Zuo, Zhimiao Yan. Environment coupled piezoelectric galloping wind energy harvesting. Sensors and Actuators A, 323 (2021) 112641 [42] Daoli Zhao, Jie Zhou, Ting Tan, Zhimiao Yan, Weipeng Sun, Junlian Yin, Wenming Zhang. Hydrokinetic piezoelectric energy harvesting by wake induced vibration. Energy 220 (2021) 119722 [41] Kejing Ma, Ting Tan*, Zhimiao Yan, Fengrui Liu, Wei-Hsin Liao, Wenming Zhang* Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting Nano Energy 82 (2021) 105693. [40] Donglin Zou; Gaoyu Liu; Zhushi Rao; Ting Tan; Wenming Zhang; Wei-Hsin Liao*. Design of Vibration Energy Harvesters with Customized Nonlinear Forces Mechanical Systems and Signal Processing, 2021, 153: 107526 [39] Donglin Zou, Gaoyu Liu; Zhushi Rao, Ting Tan, Wenming Zhang, Wei-Hsin Liao*. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 2021, 147: 107101. 【2020】 [38] Daoli Zhao, Xinyu Hu, Ting Tan, Zhimiao Yan, Wenming Zhang. Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design, Energy Conversion and Management, 2020, 222: 113260. [37]Ke-Jing Ma, Ting Tan*, Feng-Rui Liu, Lin-Chuan Zhao, Wei-Hsin Liao, Wen-Ming Zhang. Acoustic energy harvesting enhanced by locally resonant metamaterials Smart Materials and Structures, 29 (2020) 075025. Full-text Link: https://doi.org/10.1088/1361-665X/ab8fcc [36]Xiaochun Nie, Ting Tan, Zhimiao Yan, Zhitao Yan, Wenming Zhang. An ultra wide-band piezoelectric energy harvester based on Stockbridge damper and its application in transmission lines for smart grid. Applied Energy 2020, 267, 114898. [35]Ge Yan; Hong-Xiang Zou; Sen Wang; Lin-Chuan Zhao; Qiu-Hua Gao; Ting Tan; Wen-Ming Zhang*. Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. Journal of Sound and Vibration, 2020, 478: 115344. [34]Ting Tan, Zhimiao Yan, Kejing Ma, Fengrui Liu, Linchuan Zhao, Wenming Zhang*. Nonlinear characterization and performance optimization for broadband bistable energy harvester. Acta Mechanica Sinica, 2020, 36: 578–591. [33]Zhimiao Yan, Weipeng Sun, Muhammad R Hajj, Wenming Zhang, Ting Tan*. Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening. Nonlinear Dynamics, (2020) 100:1057–1077 [32]Yan G, Zou HX, Yan H, Tan T, Wang S, Zhang WM*, Peng ZK, Meng G. Multi-Direction Vibration Isolator for Momentum Wheel Assemblies. ASME Journal of Vibration and Acoustics, 2020, 142(4): 041007. [31] Zhimiao Yan, Lingzhi Wang, Muhammad R. Hajj, ZhitaoYan, Yi Sun, Ting Tan*. Energy harvesting from iced-conductor inspired wake galloping. Extreme Mechanics Letters, 35 (2020) 100633 Full-text Link: https://doi.org/10.1016/j.eml.2020.100633 [30] Ting Tan, Xinyu Hu, Zhimiao Yan, Yajian Zou, Wenming Zhang. Piezoelectromagnetic synergy design and performance analysis forwind galloping energy harvester. Sensors and Actuators A, 302 (2020) 111813. Full-text Link: https://doi.org/10.1016/j.sna.2019.111813 [29] Feng-Rui Liu, Wen-Ming Zhang*, Lin-Chuan Zhao, Hong-Xiang Zou, Ting Tan, Zhi-Ke Peng, Guang Meng. Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates. Applied Energy, 2020, 257: 114034. 2019 [28] Zhao, L. C., Zou, H. X., Gao, Q. H., Yan, G., Liu, F. R., Tan, T., ... & Zhang, W. M*. (2019). Magnetically modulated orbit for human motion energy harvesting. Applied Physics Letters, 115(26), 263902. [27] Lin-Chuan Zhao, Hong-Xiang Zou, Ge Yan, Feng-Rui Liu, Ting Tan, Ke-Xiang Wei, Wen-Ming Zhang*. Magnetic coupling and flextensional amplification mechanisms for high-robustness ambient wind energy harvesting. Energy Conversion and Management, 2019, 201: 112166. [26] Hong-Xiang Zou, Lin-Chuan Zhao, Lei Zuo, Feng-Rui Liu, Ting Tan, Ke-Xiang Wei, Wen-Ming Zhang*. Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Applied Energy, 2019, 255: 113871. [25] Ting Tan, Xinyu Hu, Zhimiao Yan, Wenming Zhang. Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor. Energy, 2019, 187: 115915. [24] Ting Tan, Zhimiao Yan, Hongxiang Zou, Kejing Ma, Fengrui Liu, Linchuan Zhao, Zhike Peng, Wenming Zhang*. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things. Applied Energy, 2019, 254: 113717. [23] Lingzhi Wang, Ting Tan, Zhimiao Yan, Dezhi Li, Bin Zhang, Zhitao Yan. Integration of tapered beam and four direct-current circuits for enhanced energy harvesting from transverse galloping. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2248-2260. [22] Lingzhi Wang, Ting Tan, Zhimiao Yan, Zhitao Yan. Tapered galloping energy harvester for power enhancement and vibration reduction. Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2853-2869. [21] Xiaochuan Nie, Ting Tan, Zhimiao Yan, Zhitao Yan, Muhammad R Hajj. Broadband and high-efficient L-shaped energy harvester based on internal resonance. International Journal of Mechanical Science, 2019, 159: 287-305. [20] Weipeng Sun, Daoli Zhao, Ting Tan, Zhimiao Yan, Pengcheng Guo, Xingqi Luo. Low velocity water flow energy harvesting using vortex induced vibration and galloping. Applied Energy, 2019, 251: 113392 [19] Lin-Chuan Zhao, Hong-Xiang Zou, Ge Yan, Feng-Rui Liu, Ting Tan, Wen-Ming Zhang*, Zhi-Ke Peng and Guang Meng. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 2019, 239: 735–746. [18] Ting Tan, Zhimiao Yan, Yajian Zou, Wenming Zhang, Optimal dual-functional design for a piezoelectric autoparametric vibration absorber, Mechanical Systems and Signal Processing, 2019,123: 513-532. 2018 [17] Zhimiao Yan, Hong Lei, Ting Tan, Weipeng Sun, Wenhu Huang, Nonlinear analysis for dual-frequency concurrent energy harvesting, Mechanical Systems and Signal Processing, 2018,104: 514-535 [16] Weipeng Sun, Zhimiao Yan, Ting Tan, Daoli Zhao and Xingqi Luo, Nonlinear characterization of the rotor-bearing system with oil-film and unbalance forces considering the oil-temperature effect. Nonlinear Dynamics, 2018, 92(3): 1119–1145 [15] Zhimiao Yan, Weipeng Sun, Ting Tan and Wenhu Huang, Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions, Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 90-116 [14] Sun, W., Tan, T., Yan, Z., Zhao, D., Luo, X., & Huang, W. Energy harvesting from water flow in open channel with macro fiber composite. AIP Advances, 2018, 8(9), 095107. 2017 [13] Ting Tan, Zhimiao Yan, Wenhu Huang, Broadband design of hybrid piezoelectric energy harvester, International Journal of Mechanical Sciences, 2017, 131-132: 516-526 https://www.sciencedirect.com/science/article/pii/S0020740317313267 [12] Ting Tan, Zhimiao Yan. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode. Smart Materials and Structures, 2017, 26: 035062. [11] Ting Tan, Zhimiao Yan, Hong Lei, Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits, Smart Materials and Structures, 2017, 26: 075007 [10] Ting Tan, Zhimiao Yan, Hong Lei, Weipeng Sun, Geometric nonlinear distributed parameter model for cantilever-beam piezoelectric energy harvesters and structural dimension analysis for galloping mode, Journal of Intelligent Material Systems and Structures, 2017, 28(20): 3066-3078. [9] Ting Tan, Zhimiao Yan, Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters, AIP advances, 2017, 7: 035318 [8] Zhimiao Yan, Haithem E. Taha, Ting Tan, Nonlinear characteristics of an autoparametric vibration system, Journal of Sound and Vibration, 2017, 390(3): 1-22 2016 [7] Ting Tan, Zhimiao Yan, Muhammad R. Hajj. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters, Applied Physics Letters, 2016, 109(25): 101908. [6] Ting Tan, Zhimiao Yan. Analytical solution and optimal design for galloping-based piezoelectric energy harvesters. Applied Physics Letters, 2016, 109(25): 253902. [5] Ting Tan, Nathan M. Cholewa, Scott W Case, Raffaella De Vita. Micro-structural and biaxial creep properties of the swine uterosacral–cardinal ligament complex. Annals of Biomedical Engineering, 2016, 44: 3225. [4] Adwoa Baah-Dwomoh, Jeffrey McGuire, Ting Tan, Raffaella De Vita, Mechanical properties of female reproductive organs and supporting connective tissues: a review of the current state of knowledge, Applied Mechanics Reviews, 2016, 68: 060801 2015 [3] Ting Tan, Frances Davis, Jason Massengill, Daniel Gruber, John Robertson and Raffaella De Vita, Histo-mechanical properties of swine uterosacral and cardinal ligaments. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 129-137. [2] Ting Tan, Raffaella De Vita, A structural constitutive model for smooth muscle contraction in biological tissues. International Journal of Non-Linear Mechanics, 2015, 75: 46-53. 2012 [1] Zhimiao Yan, Zhitao Yan, Zhengliang Li, Ting Tan, Nonlinear galloping of internally resonant iced transmission lines considering eccentricity, Journal of Sound and Vibration, 2012, 331: 3599-3616. 学术会议 • 受邀国际会议报告 (Invited Talk) (1) Ting Tan, Zhimiao Yan, Wenhu Huang. Theoretical and Experimental Study on Piezoelectric Energy Harvesting for Vibration Control and Sensor Powering. European Advanced Materials Congress, Stockholm, Sweden, 2018.08.20-08.23 (2) Ting Tan, Zhimiao Yan, Wenhu Huang. Optimal design for galloping piezoelectric energy harvesters, Collaborative Conference on Materials Research (CCMR) 2017 meeting, Jeju island, South Korea, 2017.06.26-06.30 (3) Ting Tan and Raffaella De Vita, A Structural Constitutive Model for Smooth Muscle Contraction: Application to Arteries, World Congress of Biomechanics, Dublin, Ireland, 2018.07.08-07.12

学术兼职

国际先进材料协会青年科学家、中国力学学会会员、ASME会员

推荐链接
down
wechat
bug