当前位置: X-MOL首页全球导师 国内导师 › 瞿叶高

个人简介

教育背景 2009.09 - 2014.09 上海交通大学 博士 2000.09 - 2007.07 中国地质大学(北京) 本科、硕士 工作经历 2021.08 - 至今 上海交通大学,机械与动力工程学院,教授,博导 2019.01 - 2021.07 上海交通大学,机械与动力工程学院,副教授,博导 2017.03 - 2018.12 上海交通大学,机械与动力工程学院,特别副研究员,博导 2015.02 - 2017.02 美国弗吉尼亚理工大学,工学院力学系,博士后 2014.10 - 2017.02 上海交通大学,机械与动力工程学院,博士后 科研项目 主持项目 2023 - 2026 科技部重点研发计划,支持在轨组装的大型多任务高轨卫星平台技术,课题负责人 2022 - 2025 国家自然科学基金“叶企孙”科学基金重点项目,高刚度复合结构覆盖层声振耦合机理与调控方法研究,负责人 2022 - 2024 航天先进技术联合基金重点项目,重复使用火箭气动与喷流作用下稳定性机理,负责人 2021 - 2024 深蓝计划重点项目,可编程复合材料壳体低频宽带振动与噪声控制关键技术,负责人 2020 - 2022 国家优秀青年科学基金项目,水下航行器耦合系统非线性动力学,负责人 2019 - 2021 中央军委科技委国防科技创新特区重点项目,XXXX振动和噪声研究,负责人 2018 - 2021 大型先进压水堆核电站国家重大科技专项计划,流致振动机理与试验,负责人 2018 - 2020 上海市浦江人才计划项目,负责人 2018 - 2020 上海市自然科学基金项目,挠曲电智能材料结构传感与声振控制研究,负责人 2017 - 2019 国家自然科学基金项目,含脱层损伤复合材料层合板壳非线性声振建模与机理研究,负责人 2016 - 2017 博士后基金项目(特别资助),负责人 2015 - 2016 博士后基金项目(一等资助),负责人 参与项目 2022 - 2026 国家自然科学基金研究群体项目,复杂装备动力学与振动控制,2022-2026,核心成员 2010 - 2015 重大基础研究项目(973项目)船舶声辐射机理及演化规律研究,参与人 【专著】 [1] Y.Qu, F.Xie, Y. Li. Nonlinear structural vibrations and acoustics. CRC Press | Taylor & Francis Group, P450, 2024. [2] G. Meng, Y. Qu. Vibration and Acoustics of Composite Structures: Theory and Applications. Elsevier, P500,2023 (ISBN: 9780128203507). [3] 孟光, 瞿叶高 著.《复合材料结构振动与声学》.国防工业出版社, P375, 2017. (获国防科技图书出版基金资助, ISBN: 978-7-118-11196-5) 教学工作 【本科生课程】 1. 课程名称: 机械动力学与振动 面向对象:大三本科生 学时数:48学时 2. 课程名称: 机械与动力仿真实践(机械类) 面向对象:大四本科生 学时数:64学时 3. 课程名称: 科学研究与创新实践 面向对象:大三本科生 学时数:16学时 软件版权登记及专利 【软件著作权】 1. 瞿叶高, 张君贤, 谢方涛. 复合材料壁板非线性气动热弹性振动响应数值计算软件. 登记号:2020SR0516378, 2019年 2. 瞿叶高, 宿恒,彭志科,孟光. 复合材料管道流致振动数值计算软件. 登记号:2021SR0037619, 2020年 3. 瞿叶高, 张君贤,谢方涛. 非线性振动噪声并行计算软件. 登记号:2021SR0638103,2021年 【国家发明专利】 1. 代守波, 郑宜生, 瞿叶高. 可编程调控曲面型减振降噪压电超结构. CN 202210229887.6 2. 朱俊哲, 瞿叶高, 孟光. 基于共振吸声的多层嵌套式低频宽带吸声装置. ZL 202011480540.6 3. 宿恒, 瞿叶高, 彭志科. 具有固支夹具的倾斜管道两相流流致振动试验装置. ZL 201910790397.1 荣誉奖励 2021 上海交通大学“仲英青年学者” 2020 上海市科技进步一等奖(排名第七) 2020 上海交通大学烛光奖 2019 教育部自然科学一等奖(排名第二) 2019 国家优秀青年科学基金 2018 上海交通大学 十佳班主任 2018 中国振动工程学会青年科技奖 2018 上海市浦江人才计划(A类) 2014 上海市优秀毕业生 2012 教育部“博士研究生学术新人奖”

研究领域

(1) 柔性电子技术与智能蒙皮 (2) 可编程智能结构振动与噪声控制 (3) 复合材料结构振动与声学 (4) 流-声-固耦合动力学与控制

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[91] Shoubo Dai, Yisheng Zheng, Jiawei Mao, Yegao Qu. Vibro-acoustic control of a programmable meta-shell with digital piezoelectric shunting. International Journal of Mechanical Sciences, 2023, 255, 108475. [90] Hao Liu, Yegao Qu, Fangtao Xie, Guang Meng. Fluid-structure interaction analysis of nonlinear flapping dynamic behaviors of variable stiffness composite laminated plates in viscous flows. Composite Structures, 2023, 315, 116987 [89] J. Zhu, H. Gao, S. Dai, Y. Qu, G. Meng. A composite multilayer structure for low-frequency sound absorption with continuous broadband under high sound pressure excitations. International Journal of Mechanical Sciences, 2023, 247,108197 [88] Z Xiao, P Gao, X He, Y Qu, L Wu. Multifunctional acoustic metamaterials for air ventilation, broadband sound insulation and switchable transmission. Journal of Physics D: Applied Physics, 2023, 56 044006. [87] Y. Zheng; B. Chen; S. Dai; Y. Qu; G. Meng. Emergence of negative-dispersion passbands below the ring frequency of a piezoelectric meta-shell. Journal of Sound and Vibration, 2023, 545,117447. [86] Y. Li, Y. Qu, F. Xie, G. Meng. An arbitrary Lagrangian-Eulerian method for nonlinear structural-acoustic interaction of hyperelastic solid and compressible viscous fluid. Journal of Computational Physics, 2022, 471,111665. [85] Guo, X., Zhu, Y., Qu, Y., Cao D. Design and experiment of an adaptive dynamic vibration absorber with smart leaf springs. Appl. Math. Mech.-Engl. Ed. 2022, 43, 1485–1502 [84] P. Gao, Y. Qu, J. Christensen. Non-Hermitian elastodynamics in gyro-odd continuum media. Communications Materials, 2022, 3 (1), 74. [83] J. Zhu, Y. Qu, G.Meng. Nonlinear sound absorption of Helmholtz resonators with serrated necks under high-amplitude sound wave excitation. Journal of Sound and Vibration, 2022, 537, 117197 [82] H. Su, Y.Qu, G. Wang, Z. Peng. Investigation on two-phase flow-induced vibrations of piping structure with elbow. Applied Mathematics and Mechanics (English Edition), 2022, 43(11), 1657–1674. [81] Mingzhou Gao, Qishuai Wang, Dezhi Xu, Yegao Qu, Guang Meng. Adaptive fault-tolerant flutter control based on dynamic output feedback. Journal of the Franklin Institute, 2022, doi: 10.1016/j.jfranklin.2022.10.003. [80] H. Gao, B. Yang, Y. Qu, G. Meng. Structure Carrying Moving Subsystems with Distributed Viscoelastic Coupling: Part I-Modeling and Dynamics Response. Acta Mechanica, 2022, 233 (11), 4467-4485. [79] H. Gao, B. Yang, Y. Qu, G. Meng. Structure Carrying Moving Subsystems with Distributed Viscoelastic Coupling: Part II-Parametric Resonance and Stability. Acta Mechanica, 2022, 233, 4193–4207. [78] J. Li, Y. Qu; Y. Chen, H. Hua, J. Wu. Hydroelastic analysis of underwater rotating propellers based on different boundary conditions. Journal of Marine Science and Technology, 2022, 27 (3), 1163-1178. [77] H. Gao, Y. Qu*, G. Meng. Topology optimization of 3D phononic crystals with generalized plane wave expansion method. Journal of Vibration and Acoustics, Transactions of the ASME, 2023,145 (1), 011002. [76] Y. Zheng, W. Tian, N.K. X. Lee, Y. Qu*, G. Meng. A programmable macro-fiber-composite meta-ring with digital shunting circuits. Journal of Sound and Vibration, 2022, 533, 117017. [75] H. Liu, Y. Qu*, F. Xie, G. Meng. Vortex-induced vibration of large deformable underwater composite beams based on a nonlinear higher-order shear deformation zig-zag theory. Ocean Engineering, 2022, 250, 111000. [74] J. Li, Y. Qu*, Y. Chen, H. Hua, J. Wu. BEM-FEM coupling for the hydroelastic analysis of propeller-shafting systems in non-uniform flows. Ocean Engineering, 2022, 247, 110424. [73] J. Su, W. He, K. Zhang, Q. Zhang, Y. Qu. Vibration analysis of functionally graded porous cylindrical shells filled with dense fluid using an energy method. Applied Mathematical Modelling, 2022, 108, 167-188. [72] J. Zhang, F. Xie, Y. Qu*, G. Meng. Acoustic waves radiated from two degrees-of-freedom nonlinear rigid oscillator systems immersed in unbounded compressible fluid. Journal of Vibration and Acoustics - ASME, 2022, 144(1): 011003. [71] F. Xie, Y. Qu*, G. Meng. Numerical analyses of nonlinear acoustic wave radiation behaviors of vibrational objects immersed in infinite fluid. Mechanical Systems and Signal Processing, 2022, 163: 108176. [70] J. Zhu, Y. Qu*, J. Zhang, H. Su, G. Meng. A multi-layer overlapping structure for continuous broadband acoustic wave absorption at lower-frequencies. Applied Acoustics, 2022, 187: 108496. [69] W. Gu, J. Zhang, L. Pan, Y. Qu, J. H. Choi, X. Zhu. Coupling effect of nonlinear stiffness of tape spring hinges and flexible deformation of panels during orbit maneuvers. Aerospace, 2022, 9(1): 30. [68] F. Xie, Y. Qu, G. Meng. Finite-amplitude acoustic responses of large-amplitude vibration objects with complex geometries in an infinite fluid. Journal of the Acoustical Society of America, 2022, 151(1): 529-543. [67] X. Guo, S. Wang, Y. Qu, D. Cao. Nonlinear dynamics of Z-shaped morphing wings in subsonic flow. Aerospace Science and Technology, 2021, 119: 107145. [66] M. Lin, C. Cheng, Z. Peng, X. Dong, Y. Qu, G. Meng. Nonlinear dynamical system identification using the sparse regression and separable least squares methods. Journal of Sound and Vibration, 2021, 505: 116141. [65] Y. Zheng, J. Zhang, Y. Qu, G. Meng. Adaptive nonreciprocal wave attenuation in linear piezoelectric metastructures shunted with one-way electrical transmission lines. Journal of Sound and Vibration, 2021, 503: 116113. [64] J. Su, Y. Qu, K. Zhang, Q. Zhang, Y. Tian. Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports. Thin-Walled Structures, 2021, 164: 107838. [63] J. Li, Y. Qu, Y. Chen, H. Hua. Numerical analysis on dynamic behaviors of coupled propeller-shafting system of underwater vehicles. Applied Ocean Research, 2021, 110: 102613. [62] Y. Qu, F. Xie, H. Su, G. Meng. Numerical analysis of stick-slip induced nonlinear vibration and acoustic responses of composite laminated plates with friction boundaries. Composite Structures, 2021, 258: 113316. [61] J. Li, Y. Qu, Y. Chen, H. Hua, J. Wu. Dynamic responses of elastic marine propellers in non-uniform flows. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021. [60] X. Guo, K. Luo, Y. Qu, D. Cao. The design and aerodynamic analysis of intelligent variable camber airfoils with MFC. International Journal of Dynamics and Control, 2021. [59] Y. Zheng, J. Zhang, Y. Qu, G. Meng. Investigations of a piezoelectric metastructure using negative-resistance circuits to enhance the bandgap performance. Journal of Vibration and Control, 2022,28 (17-18), 2346-2356 [58] J. Zhang, Y. Qu, F. Xie, Z. Peng, W. Zhang, G. Meng. Investigations on nonlinear aerothermoelastic behaviors of multilayered composite panels subject to frictional boundaries and random acoustic loads in supersonic flow. Thin-Walled Structures, 2021, 158: 107180. [57] J. Li, Y. Qu, H. Hua. Numerical analysis of added mass and damping of elastic hydrofoils. Journal of Hydrodynamics, 2020, 32(5): 1009-1023. [56] J. Hu, W. Chen, S. Ren, S. Zhang, Y. Qu, Y. Yin, D. Yang. Building performance monitoring and analysis of a large-span aerogel-membrane airport terminal. Engineering Structures, 2020, 219: 110837. [55] Y. Qu, D. Liang, G. Meng. Vibration and acoustic waves of multilayered cylindrical shells carrying internal components attached by nonlinear compliant mounts. European Journal of Mechanics, A/Solids, 2020, 83: 104032. [54] Z. Li, B. Wen, Z. Peng, X. Dong, Y. Qu. Dynamic modeling and analysis of wind turbine drivetrain considering the effects of non-torque loads. Applied Mathematical Modelling, 2020, 83: 146-168. [53] J. Hu, W. Chen, Y. Qu, D. Yang. Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance. Engineering Structures, 2020, 210: 110292. [52] F. Xie, Y. Qu, M. A. Islam, G. Meng. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries. Computers & Fluids, 2020, 202: 104498. [51] J. Li, Y. Qu, Z. Zhang, H. Hua. Parametric analysis on hydroelastic behaviors of hydrofoils and propellers using a strongly coupled finite element/panel method. Journal of Marine Science and Technology, 2020, 25(1): 148-161. [50] Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, W. Zhang. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104057. [49] J. Hu, W. Chen, Y. Li, Y. Qu, B. Zhao, D. Yang. Temperature-stress-time methodology for flat-patterning ETFE cushions in use for large-span building structures. Engineering Structures, 2020, 204: 109607. [48] R. Shi, Y. Qu, R. C. Batra. Numerical simulation of underwater explosion wave propagation in water-solid-air/water system using ghost fluid/solid method. Journal of Fluids and Structures, 2019, 90: 354-378. [47] Y. Qu, F. Xie, G. Meng. Nonlinear dynamic and acoustic analysis of orthogonally stiffened composite laminated cylindrical shells containing piecewise isolators. Journal of Sound and Vibration, 2019, 456: 199-220. [46] F. Xie, Y. Qu, Q. Guo, W. Zhang, Z. Peng. Nonlinear flutter of composite laminated panels with local non-smooth friction boundaries. Composite Structures, 2019, 223: 110934. [45] Y. Qu, Z. Peng, W. Zhang, G. Meng. Nonlinear vibro-acoustic behaviors of coupled sandwich cylindrical shell and spring-mass-damper systems. Mechanical Systems and Signal Processing, 2019 124: 254-274. [44] Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear structural and acoustic responses of three-dimensional elastic cylindrical shells with internal mass-spring systems. Applied Acoustics, 2019, 149: 143-155. [43] Y. Qu, W. Zhang, Z. Peng, G. Meng. Time-domain structural-acoustic analysis of composite plates subjected to moving dynamic loads. Composite Structures, 2019, 208: 574-584. [42] F. Xie, Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory. International Journal of Mechanical Sciences, 2019, 150: 226-237. [41] J. Li, Y. Qu, Y. Chen, H. Hua. Investigation of added mass and damping coefficients of underwater rotating propeller using a frequency-domain panel method. Journal of Sound and Vibration, 2018, 432: 602-620. [40] J. Su, K. Zhou, Y. Qu, H. Hua. A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Archive of Applied Mechanics, 2018, 88(7): 1089–1104. [39] J. Li, Z. Rao, J. Su, H. Hua, Y. Qu. A numerical method for predicting the hydroelastic response of marine propellers. Applied Ocean Research, 2018, 74, 188–204. [38] J. Su, Z. Lei, Y. Qu, H. Hua. Effects of non-axisymmetric structures on vibro-acoustic signatures of a submerged vessel subject to propeller forces. Applied Acoustics, 2018, 133: 28-37. [37] Y. Qu, R. Shi, R. C. Batra. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. Journal of Computational Physics, 2018, 354: 672-691. [36] J. Su, Y. Qu, H. Hua. Modal coupling in the vibroacoustic responses of submerged spherical-cylindrical-spherical shells stiffened by ribs and plates, Noise Control Engineering Journal, 2018, 66(1): 45-55. [35] Y. Qu, R. C. Batra. Constrained moving least-squares immersed boundary method for fluid-structure interaction analysis. International Journal for Numerical Methods in Fluids, 2017, 85(12): 675-692. [34] J. Li, Y. Qu, H. Hua. Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm. Ocean Engineering, 2017, 146: 178–191. [33] S. Ren, X. Long, Y. Qu, G. Meng. A semi-analytical method for stability analysis of milling thin-walled plate. Meccanica, 2017, 52(11-12): 2915-2929. [32] Y. Qu, J. Su, H. Hua, G. Meng. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces. Journal of Sound and Vibration, 2017, 401: 76–93. [31] Y. Qu, G. Meng. Nonlinear vibro-acoustic analysis of composite sandwich plates with skin-core debondings. AIAA Journal, 2017, 55(5): 1723-1733. [30] C. Li, J. Wang, Y. Qu, Z. Zhang, H. Hua. Numerical and experimental investigation on vibro-acoustic response of a shaft-hull system. Engineering Analysis with Boundary Elements, 2016, 71: 129-139. [29] B. Zhao, J. Hu, W. Chen, Z. Qiu, J. Zhou, Y. Qu, B. Ge. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure. Journal of Physics D: Applied Physics, 2016, 49(39), 395601. [28] Y. Qu, G. Meng. Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids. Journal of Sound and Vibration, 2016, 376: 112-130. [27] X. Xie, H. Zheng, Y. Qu. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity. Journal of Sound and Vibration, 2016, 373: 147-163. [26] J. Hu, W. Chen, Q. Cai, C. Gao, B. Zhao, Z. Qiu, Y. Qu. Structural behavior of the PV–ETFE cushion roof. Thin-Walled Structures, 2016, 101: 169-180. [25] Y. Qu, G. Meng. Vibro-acoustic analysis of multilayered shells of revolution based on a general higher-order shear deformable zig-zag theory. Composite Structures, 2015, 134: 689-707. [24] J. Hu, W. Chen, Z. Qiu, B. Zhao, J. Zhou, Y. Qu. Thermal performances of ETFE cushion roof integrated amorphous silicon photovoltaic. Energy Conversion and Management, 2015, 106: 1201-1211. [23] Y. Qu, H. Hua, G. Meng. Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements. Journal of Sound and Vibration, 2015, 355: 345-359. [22] B. Zhao, W. Chen, J. Hu, Z. Qiu, Y. Qu, B. Ge. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs. Energy Conversion and Management, 2015, 100: 440-448. [21] Y. Qu, S. Wu, H. Li, G. Meng. Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: Beams, plates and solids. Composites Part B: Engineering, 2015, 73: 96-110. [20] S. Wu, Y. Qu, H. Hua. Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method. Journal of Composite Materials, 2015, 49(1): 35-52. [19] Y. Qu, G. Meng. Dynamic analysis of composite laminated and sandwich hollow bodies of revolution based on three-dimensional elasticity theory. Composite Structures, 2014, 112(1): 378-396. [18] Y. Qu, G. Meng. Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. Part II: Application. European Journal of Mechanics - A: Solids, 2014, 44: 234-248. [17] Y. Qu, G. Meng. Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. Part I: Theory. European Journal of Mechanics - A: Solids, 2014, 44: 222-233. [16] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. A variational method for free vibration analysis of joined cylindrical-conical shells. Journal of Vibration and Control, 2013, 19(16): 2319-2334. [15] Y. Qu, X. Long, H. Li, G. Meng. A variational formulation for dynamic analysis of composite laminated beams based on a general higher-order shear deformation theory. Composite Structures, 2013, 102: 175-192. [14] Y. Qu, X. Long, G. Yuan, G. Meng. A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions. Composites Part B: Engineering, 2013, 50: 381-402. [13] S. Wu, Y. Qu, H. Hua. Vibrations characteristics of joined cylindrical-spherical shell with elastic-support boundary conditions. Journal of Mechanical Science and Technology, 2013, 27(5): 1265-1272. [12] Y. Qu, S. Wu, Y. Chen, H. Hua. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based on a modified variational approach. International Journal of Mechanical Sciences, 2013, 69: 72-84. [11] Y. Qu, X. Long, S. Wu, G. Meng. A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Composite Structures, 2013, 98: 169-191. [10] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Applied Acoustics, 2013, 74(3): 425-439. [9] S. Wu, Y. Qu, H. Hua. Vibration characteristics of a spherical-cylindrical- spherical shell by a domain decomposition method. Mechanics Research Communications, 2013, 49: 17-26. [8] Y. Qu, Y. Chen, Y. Chen, X. Long, H. Hua, G. Meng. A domain decomposition method for vibration analysis of conical shells with uniform and stepped thickness. Journal of Vibration and Acoustics-Transactions of the ASME, 2013, 135(1): 011014. [7] Y. Qu, G. Yuan, S. Wu, G. Meng. Three-dimensional elasticity solution for vibration analysis of composite rectangular parallelepipeds. European Journal of Mechanics - A: Solids, 2013, 42: 376-394. [6] Y. Qu, H. Hua, G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Composite Structures, 2013, 95: 307-321. [5] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. European Journal of Mechanics - A: Solids, 2013, 37: 200-215. [4] S. Wu, Y. Qu, X. Huang, H. Hua. Free vibration analysis on combined cylindrical-spherical shell. Applied Mechanics and Materials, 2012, 226-228: 3-8. [3] S. Wu, Y. Qu, H. Hua. A domain decomposition method for forced vibration analysis of joined conical-cylindrical-spherical shell. Applied Mechanics and Materials, 2012, 184-185: 3-10. [2] Y. Qu, X. Long, G. Meng, H. Hua. A domain decomposition method for free vibration of circular cylindrical shells with discontinuity in thickness. Advanced Science Letters, 2012, 12: 309-314. [1] C. Bu, Y. Qu, Z. Cheng, B. Liu. Numerical simulation of impact on pneumatic DTH hammer percussive drilling. Journal of Earth Science, 2009, 20(5): 868–878. 三、会议论文 [17] Yegao Qu. Structural-acoustic interactions of elastic structures containing Nonlinearities. International Symposium on High-fidelity Computational Methods & Applications, 13 – 16 December, 2019, Shanghai, China. [16] H. Su, Y. G. Qu, S. C. Zhou, Y. Zhou, T. Wu, Z. K. Peng. Fluid-structure interaction analysis of elastic pipes with gas-liquid two-phase flow. 2nd International Conference on Mechanics of Advanced Materials and Structures, 2019, 19-22 October,Nanjing, China. [15] Yegao Qu, Guang Meng. An accurate immersed boundary method for fluid-solid interaction simulation. 2nd International Conference on Mechanics of Advanced Materials and Structures, 2019, 19-22 October,Nanjing, China. [14] Y. Qu, F. Xie, W. Zhang, Z. Peng, G.Meng. Nonlinear structural-acoustic analysis of orthogonally stiffened composite cylindrical shells with piecewise isolators. The 48th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2019), 2019, 16-19 June, Madrid, Spain. [13] Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear structural and acoustic responses of debonded sandwich shells. The 47th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2018), 2018, 26-29 August, Chicago, USA [12] F. Xie, Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear panel flutter analysis using a general higher-order shear deformation plate theory. 25th International Congress on Sound and Vibration, 2018, 8-12 July, Hiroshima, Japan. [11] Su, Jinpeng; Qu, Yegao; Zhou, Kai; et al. Modal coupling in the vibro-acoustic responses of submerged coupled shells. The 46th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2017), 2017, 27-30 August, Hong Kong. [10] Y. Qu, R.C. Batra. An accurate immersed boundary method for fluid-solid interaction simulation. 2016 Macromolecules Innovation Institute Annual Meeting, 10-12 October, 2016, Blacksburg, USA. [9] Y. Qu, R.C. Batra. Robust Cartesian grid method for simulating compressible viscous flows with geometrically complex bodies. The 2016 Fall Fluid Mechanics Symposium, 16 November, 2016, Blacksburg, USA. [8] Y. Qu, G. Meng. Nonlinear vibro-acoustic analysis of composite plates with embedded delaminations. The 23rd International Congress on Sound and Vibration, 10-14 July, 2016, Athens, Greece. [7] Y. Qu, H. Hua, G. Meng. Structural‐acoustic coupling analysis of a submarine hull due to propeller force. The 23rd International Congress on Sound and Vibration, 10-14 July, 2016, Athens, Greece. [6] Y. Qu, H. Li, F. Li, G. Meng. Nonlinear vibration and sound radiation from skin/core debonded sandwich plates. The 24th International Congress of Theoretical and Applied Mechanics (ICTAM), 21-26 August, 2016, Montreal, Canada. [5] Y. Qu, H. Hua, H. Peters, N. Kessissoglou. Modal contributions to the acoustic responses of fluid-loaded shells. 43rd International Congress on Noise Control Engineering, 16-19 November, 2014, Melbourne, Australia. [4] Y. Qu, S.Wu, X. Long, Y. Chen, H. Hua. Dynamic analysis of complex FGM shell combinations with arbitrary boundary conditions. 17th International Conference on Composite Structures (ICCS17), 17-21 June, 2013, Porto, Portugal. [3] S. Wu, Y. Qu, G. Yuan, H. Hua. Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method. 17th International Conference on Composite Structures (ICCS17), 17-21 June, 2013, Porto, Portugal. [2] Y. Qu, H. Hua, Y. Chen, G. Meng. A new variational method for free vibration analysis of conical shells with discontinuity in thickness. The 23rd International Congress of Theoretical and Applied Mechanics (XXIII ICTAM), 19-24 August, 2012, Beijing, China. [1] Y. Qu, H. Hua, Y. Chen, X. Long, G. Meng. A domain decomposition method for vibration analysis of submarine hulls. ISMA2012 International Conference on Noise and Vibration Engineering, 17-19 September, 2012, Leuven, Belgium.

学术兼职

【期刊兼职】 [1] Applied Acoustics,副主编, 2022-2025 [2] International Journal of Architectural Engineering Technology,编委,2021-2023 [3] Mathematics,编委,2021- [4] Journal of Shanghai Jiao Tong University (Science),青年编委,2019-2023 [5] 力学学报,青年编委,2021-2023 [6] 上海交通大学学报,青年编委,2019-2023 [7] 动力学与控制学报,青年编委,2021-2024 【学术团体】 [1] 中国振动工程学会,副秘书长 [2] 中国振动工程学会科技咨询委员会,秘书长 [3] 上海市力学学会振动力学专委会,副主任 [4] 中国力学学会理性力学和力学中的数学方法专业委员会,委员 [5] 中国振动工程学会非线性振动专业委员会,委员 [6] 中国振动工程学会航天器动力学与控制专业委员会,委员

推荐链接
down
wechat
bug