Skip to main content
Log in

Local behaviors of Fourier expansions for functions of limited regularities

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Based on the explicit formula of the pointwise error of Fourier projection approximation and by applying van der Corput-type Lemma, optimal convergence rates for periodic functions with different degrees of smoothness are established. It shows that the convergence rate enjoys a decay rate one order higher in the smooth parts than that at the singularities. In addition, it also depends on the distance from the singularities. Ample numerical experiments illustrate the perfect coincidence with the estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oppenheim, A.V., Willsky, A.S., Nawab, S. H.: Signals and Systems, 2nd edition. Pearson Prentice-Hall (1997)

  2. Stein, E.M., Shakarchi, R.: Fourier Analysis. An Introducution. Priceton University Press, Princeton (2003)

  3. Tavighi, A., Ahmadi, H., Armstrong, M., Martí, J.R.: Discrete-time Fourier series to simulate transient over voltages in power systems. Electr. Power Syst. Res. 188, 106529 (2020). https://doi.org/10.1016/j.epsr.2020.106529

  4. Shen, J., Tang, T., Wang, L.: Spectral Methods, Algorithms. Analysis and Applications. Springer-Verlag, Berlin Heidelberg (2011)

  5. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia, Pennsylvania (2000)

  6. Li, J.: Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation. Appl. Numer. Math. 172, 1–26 (2022). https://doi.org/10.1016/j.apnum.2021.09.006

    Article  MathSciNet  Google Scholar 

  7. Hu, D., Cai, W., Xu, Z., Bo, Y., Wang, Y.: Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping. Math. Comput. Simul. 188, 35–59 (2021). https://doi.org/10.1016/j.matcom.2021.03.034

    Article  MathSciNet  Google Scholar 

  8. Yu, Y., Zhao, Y., Li, B., Jiang, T.: Chebyshev-Fourier collocation spectral method for the solution of swirling flow. Chaos Solitons Fractals 128, 261–268 (2019). https://doi.org/10.1016/j.chaos.2019.07.033

    Article  MathSciNet  Google Scholar 

  9. Hu, J., Qi, K.: A fast Fourier spectral method for the homogeneous Boltzmann equation with non-cutoff collision kernels. J. Comput. Phys. 423, 109806 (2020). https://doi.org/10.1016/j.jcp.2020.109806

    Article  MathSciNet  Google Scholar 

  10. Liang, X., Khaliq, A.: An efficient Fourier spectral exponential time differencing method for the space-fractional nonlinear Schrödinger equations. Comput. Math. Appl. 75(12), 4438–4457 (2018). https://doi.org/10.1016/j.camwa.2018.03.042

    Article  MathSciNet  Google Scholar 

  11. Rashid, A., Md. Ismail, A.I.B.: The Fourier spectral method for the Sivashinsky equation. An. Sti. Ti. U. Ovid. Co-Mat. 17(2), 191–202 (2009)

  12. Serov, V.: Fourier Series. Springer, Fourier Transform and Their Applications to Mathematical Physics (2017)

  13. Bernatz, R.: Fourier Series and Numerical Methods for Partial Differential Equations. John Wiley and Sons, Inc (2010)

  14. Lebesgue, H.: Sur la représentation trigonométrique approchée des fonctions satisfaiaant à une condition de Lipschitz. B. Soc. Math. Fr. 38, 184–210 (1910)

    Article  Google Scholar 

  15. Salem, R., Zygmud, A.: The approximation by partial sums of Fourier series. Trans. Am. Math. Soc. 59, 14–22 (1946)

    Article  MathSciNet  Google Scholar 

  16. Jackson, D.: On approximations by trigonometrical sums and polynomials. Trans. Am. Math. Soc. 13, 491–515 (1912). https://doi.org/10.2307/1988583

    Article  Google Scholar 

  17. Fejér, L.: Lebesguesche konstanten und divergente Fourier-reihen. J. für die Reine und Angew. Math. 139, 22–53 (1910)

  18. Zygmund, A.: Trigomometric Series, 3rd edn. Cambridge University Press, Volumes I and II combined (2002)

  19. Paley, R., Wiener, N.: Fourier transforms in the complex domain. AMS (1934). https://doi.org/10.1090/coll/019

  20. Wright, G.B., Javed, M., Montanelli, H., Trefethen, L.N.: Extension of Chebfun to periodic functions. SIAM J. Sci. Comput. 37(5), C554–C573 (2015). https://doi.org/10.1137/141001007

    Article  MathSciNet  Google Scholar 

  21. Katznelson, Y.: An Introduction to Harmonic Analysis, 2nd edn. Dover, NewYork (1976)

  22. Trefethen, L.N.: Approximation Theory and Application Practice. SIAM, Philadelphia (2013)

  23. Zorich, V.A.: Mathematics Analysis, 4th edn. Springer-Verlag, Berlin Heidelberg (2004)

  24. Wahlbin, L.B.: A comparison of the local behavior of spline \(L^{2}\)-projections, Fourier series and Legendre series, in: P. Grisvard, W. Wendland, J. Whiteman (Eds.), Singularities and constructive methods for their treatment, in: Lecture Notes in Mathematics, vol. 1121, Springer Berlin Heidelberg, 319–346 (1985) https://doi.org/10.1007/BFb0076279

  25. Babuška, I., Hakula, H.: Pointwise error estimate of the Legendre expension: The known and unknown features. Comput. Methods Appl. Mech. Eng. 345, 748–773 (2019). https://doi.org/10.1016/j.cma.2018.11.017

    Article  Google Scholar 

  26. Xiang, S., Kong, D., Liu, G., Wang, L.: Pointwise error estimates and local supperconvergence of Jacobi expansions. Math. Comp. 92(342), 1747–1778 (2023). https://doi.org/10.1090/mcom/3835

    Article  MathSciNet  Google Scholar 

  27. Wang, H.: Are best approximations really better than Chebyshev? (2021) https://doi.org/10.48550/arXiv.2106.03456

  28. Wang, H.: Analysis of error localization of Chebyshev spectral approximations. SIAM J. Numer. Anal. 61(2), 952–972 (2023). https://doi.org/10.1137/22M1481452

    Article  MathSciNet  Google Scholar 

  29. Wang, H.: Optimal rates of convergence and error localization of Gegenbauer projections. IMA J. Numer. Anal. 43(4), 2413–2444 (2023). https://doi.org/10.1093/imanum/drac047

    Article  MathSciNet  Google Scholar 

  30. Bergold, P., Lasser, C.: Fourier series windowed by a bump function. J. Fourier Anal. Appl. 26(4), 26–65 (2020). https://doi.org/10.1007/s00041-020-09773-3

    Article  MathSciNet  Google Scholar 

  31. Huybrechs, D.: On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326–4355 (2010). https://doi.org/10.1137/090752456

    Article  MathSciNet  Google Scholar 

  32. Matthysen, R., Huybrechs, D.: Fast algorithms for the computation of Fourier extensions of arbitrary length. SIAM J. Sci. Comput. 38(2), A899–A922 (2016). https://doi.org/10.1137/15M1030923

    Article  MathSciNet  Google Scholar 

  33. Dominguez, V., Graham, I.G., Kim, T.: Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points. SIAM J. Numer. Anal. 51, 1542–1566 (2003). https://doi.org/10.1137/120884146

    Article  MathSciNet  Google Scholar 

  34. Xiang, S., He, G., Cho, Y.J.: On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Adv. Comput. Math. 41, 573–597 (2015). https://doi.org/10.1007/s10444-014-9377-9

    Article  MathSciNet  Google Scholar 

  35. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

  36. Webb, M., Coppé, V., Huybrechs, D.: Ponitwise and uniform convergence of Fourier extensions. Constr. Approx. 52, 139–175 (2020). https://doi.org/10.1007/s00365-019-09486-x

    Article  MathSciNet  Google Scholar 

  37. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 305–378 (2007) https://doi.org/10.1017/S0962492906320016

  38. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978). https://doi.org/10.1109/PROC.1978.10837

    Article  Google Scholar 

  39. Mckechan, D.J.A., Robinson, C., Sathyaprakash, B.S.: A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries. Classical Quantum Gravity 27(8), 1115–1127 (2010). https://doi.org/10.1088/0264-9381/27/8/084020

    Article  Google Scholar 

  40. Trefethen, L.N.: Six myths of polynomial interpolation and quadrature. Maths. Today 47(4), 184–188 (2011)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Desong Kong for his useful suggestions on the last numerical experiment. The authors are grateful to the anonymous referees for their valuable comments and suggestions for improvement of this paper.

Funding

This work was supported by the National Natural Science Foundation of China (No. 12271528). The first author is supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2020zzts030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhuang Xiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Yuesheng Xu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xiang, S. Local behaviors of Fourier expansions for functions of limited regularities. Adv Comput Math 50, 47 (2024). https://doi.org/10.1007/s10444-024-10136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10136-5

Keywords

Mathematics Subject Classification (2010)

Navigation