Skip to main content
Log in

Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a linearized structure-preserving Galerkin finite element method is investigated for Poisson-Nernst-Planck (PNP) equations. By making full use of the high accuracy estimation of the bilinear element, the mean value technique and rigorously dealing with the coupled nonlinear term, not only the unconditionally optimal error estimate in \(L^2\)-norm but also the unconditionally superclose error estimate in \(H^1\)-norm for the related variables are obtained. Then, the unconditionally global superconvergence error estimate in \(H^1\)-norm is derived by a simple and efficient interpolation post-processing approach, without any coupling restriction condition between the time step size and the space mesh width. Finally, numerical results are provided to confirm the theoretical findings. The numerical scheme preserves the global mass conservation and the electric energy decay, and this work has a great improvement of the error estimate results given in Prohl and Schmuck (Numer. Math. 111, 591–630 2009) and Gao and He (J. Sci. Comput. 72, 1269–1289 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Enquiries about data availability should be directed to the authors.

References

  1. Wei, G., Zheng, Q., Chen, Z., Xia, K.: Variational multiscale models for charge transport. SIAM Rev. 54, 699–754 (2012)

    Article  MathSciNet  Google Scholar 

  2. Xu, S., Chen, M., Majd, S., Yue, X., Liu, C.: Modeling and simulating asymmetrical conductance changes in Gramicidin pores. Mol. Based Math. Biol. 2, 509–523 (2014)

    Google Scholar 

  3. Brezzi, F., Marini, L., Pietra, P.: Numerical simulation of semiconductor devices. Comput. Methods Appl. Mech. Eng. 75, 493–514 (1989)

    Article  MathSciNet  Google Scholar 

  4. Gajewski, H., Groger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  Google Scholar 

  5. Singer, A., Norbury, J.: A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70(3), 949–968 (2009)

    Article  MathSciNet  Google Scholar 

  6. Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson-Nernst-Planck equations. J. Comput. Electron. 15, 1–15 (2013)

    Google Scholar 

  7. Flavell, A., Kabre, J., Li, X.: An energy-preserving discretization for the Poisson-Nernst-Planck equations. J. Comput. Electron. 16, 431–441 (2017)

    Article  Google Scholar 

  8. He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson-Nernst-Planck system. Appl. Math. Comput. 287–288, 214–223 (2016)

    MathSciNet  Google Scholar 

  9. Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson-Nernst-Planck equations. J. Comput. Phys. 268, 363–376 (2014)

    Article  MathSciNet  Google Scholar 

  10. Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids. J. Comput. Phys. 274, 633–653 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hu, J.W., Huang, X.D.: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson-Nernst-Planck equations. Numer. Math. 145, 77–115 (2020)

    Article  MathSciNet  Google Scholar 

  12. He, D.D., Pan, K.J., Yue, X.Q.: A positivity preserving and free energy dissipative difference scheme for the Poisson-Nernst-Planck system. J. Sci. Comput. 81, 436–458 (2019)

    Article  MathSciNet  Google Scholar 

  13. Sun, Y.Z., Sun, P.T., Zheng, B., Lin, G.: Error analysis of finite element method for Poisson-Nernst-Planck equations. J. Comput. Appl. Math. 301, 28–43 (2016)

    Article  MathSciNet  Google Scholar 

  14. Prohl, A., Schmuck, M.: Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111, 591–630 (2009)

    Article  MathSciNet  Google Scholar 

  15. Gao, H.D., He, D.D.: Linearized conservative finite element methods for the Nernst-Planck-Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gao, H.D., Sun, P.T.: A linearized local conservative mixed finite element method for Poisson-Nernst-Planck equations. J. Sci. Comput. 77, 793–817 (2018)

    Article  MathSciNet  Google Scholar 

  17. Shi, D.Y., Yang, H.J.: Superconvergence analysis of finite element method for Poisson-Nernst-Planck equations. Numer. Methods Partial Differ. Equ. 35, 1206–1223 (2019)

    Article  MathSciNet  Google Scholar 

  18. Shi, X.Y., Lu, L.Z.: Superconvergent estimate of a Galerkin finite element method for nonlinear Poisson-Nernst-Planck equations. Appl. Math. Lett. 104, 106253 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Tang, M., Liu, C., Lu, B.Z., Zhong, L.Q.: Superconvergent gradient recovery for nonlinear Poisson-Nernst-Planck equations with applications to the ion channel problem, Adv. Comput. Math. 46,(78) (2020)

  20. Shi, X.Y., Lu, L.Z.: Nonconforming finite element method for coupled Poisson-Nernst-Planck equations. Numer. Methods Partial Differ. Equ. 37(3), 2714–2729 (2021)

    Article  MathSciNet  Google Scholar 

  21. He, M.Y., Sun, P.T.: Error analysis of mixed finite element method for Poisson-Nernst-Planck system. Numer. Methods Partial Differ. Equ. 33(6), 1924–1948 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lu, B., Holst, M. J., Mccammon, A., Zhou,C.: Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions, J. Comput. Phys. 229,(19) pp. 6979-6994 (2010)

  23. Jerome, J.W., Kerkhoven, T.: A finite element approximation theory for the drift diffusion semiconductor model. SIAM J. Numer. Anal. 28(2), 403–422 (1991)

    Article  MathSciNet  Google Scholar 

  24. Yang, Y., Lu, B.: An error analysis for the finite element approximation to the steady-state Poisson-Nernst-Planck equations. Adv. Appl. Math. Mech. 5(1), 113–130 (2013)

    Article  MathSciNet  Google Scholar 

  25. Liu, X.L., Xu, C.J.: Efficient time-stepping/spectral methods for the Navier-Stokes-Nernst-Planck-Poisson equations. Commun. Comput. Phys. 21(5), 1408–1428 (2017)

    Article  MathSciNet  Google Scholar 

  26. Hollerbach, U., Chen, D.P., Eisenberg, R.S.: Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through gramicidin A. J. Sci. Comput. 16, 373–409 (2001)

    Article  Google Scholar 

  27. Adams, R., Fournier, J.F.: Sobolev spaces, Academic press (2003)

  28. Brenner, S., Scott, L.: The mathematical theory of finite element methods. Springer, New York (2002)

    Book  Google Scholar 

  29. Lin, Q., Lin, J.F.: Finite element methods: accuracy and improvement. Science Press, Beijing (2006)

    Google Scholar 

  30. Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)

    Article  MathSciNet  Google Scholar 

  31. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  32. Rannacher, R., Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38, 437–445 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 12101568, 11801527) and the Doctoral Starting Foundation of Zhengzhou University of Aeronautics(No. 63020390).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Long Chen

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Li, M. Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations. Adv Comput Math 50, 43 (2024). https://doi.org/10.1007/s10444-024-10145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10145-4

Keywords

Mathematical Subject Classification (2010)

Navigation