Skip to main content

Advertisement

Log in

A Framework for Predicting the Gas-Bearing Distribution of Unconventional Reservoirs by Deep Learning

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Multicomponent seismic data can be used to predict unconventional reservoirs; however, this is a challenging task. Although machine learning (ML), particularly deep learning, can be used in this regard, its accuracy in reservoir prediction depends largely on the amount of data available for training and the complexity of the architecture. This study attempted to address this problem using transfer learning (TL) and a compact convolutional neural network with a self-attention mechanism (SACNN). We developed a framework for unconventional reservoir prediction by expanding the data samples and optimizing model performance. First, the synthetic data for both oil and gas reservoirs were used as the source data; their effectiveness was tested using the SACNN model. Subsequently, a real dataset was obtained by optimizing the real multicomponent seismic attributes. The TL dataset was constructed by transferring synthetic gas reservoir data to real dataset. Finally, the constructed SACNN model was used to predict the gas-bearing distribution in tight sandstone gas reservoirs. The results showed the superiority of the proposed model over conventional ML models, with lower error in the unconventional reservoir distribution prediction. Moreover, the proposed model exhibited superior prediction performance (R2 = 0.9731) on the testing dataset compared to models trained solely on synthetic (R2 = 0.9389) and real (R2 = 0.9627) data. Moreover, uncertainty analysis showed that the proposed model is robust and efficient. The proposed framework provides a basis for constructing data-driven models for energy conversion and utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28

Similar content being viewed by others

Notes

  1. 1 mD = 9.869233 × 10-16 m2

References

  • Abdel-Fattah, M. I., Pigott, J. D., & El-Sadek, M. S. (2020). Integrated seismic attributes and stochastic inversion for reservoir characterization: Insights from Wadi field (NE Abu-Gharadig Basin, Egypt). Journal of the African Earth Sciences, 161, 103661.

    Article  Google Scholar 

  • Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. Computer Science. https://doi.org/10.48550/arXiv.1409.0473

    Article  Google Scholar 

  • Bellman, L. M. W. (2018). Integrated shale-gas reservoir characterization: A case study incorporating multicomponent seismic data. Interpretation, 6(2), SE23–SE37.

    Article  Google Scholar 

  • Bergstra, J., Bardenet, R., Bengio, Y., & Kegl, B. (2012). Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems, 24, 2546–2554.

    Google Scholar 

  • Bertermann, D., Klug, H., & Morper-Busch, L. (2015). A pan-European planning basis for estimating the very shallow geothermal energy potentials. Renewable Energy, 75, 335–347.

    Article  Google Scholar 

  • Chatterjee, R., Mazumdar, S., Sherratt, R. S., Halder, R., Maitra, T., & Giri, D. (2021). Real-time speech emotion analysis for smart home assistants. IEEE Transactions on Consumer Electronics, 67(1), 68–76.

    Article  Google Scholar 

  • Chen, Y. H., Bi, J. J., Qiu, X. B., Chen, Y. B., Yang, H., Cao, J. J., Di, Y. X., Zhao, H. S., & Li, Z. X. (2020). A method of seismic meme inversion and its application. Petroleum Exploration and Development, 47(6), 1235–1245.

    Article  Google Scholar 

  • Chou, J. S., Truong, D. N., & Kuo, C. C. (2021). Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning. Energy, 224, 120100.

    Article  Google Scholar 

  • Das, V., & Mukerji, T. (2020). Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics, 85(5), N41–N55.

    Article  Google Scholar 

  • Das, V., Pollack, A., Wollner, U., & Mukerji, T. (2019). Convolutional neural network for seismic impedance inversion. Geophysics, 84(6), R869–R880.

    Article  Google Scholar 

  • Derakhshan, S.H., Deutsch, C.V. (2008). Direct simulation of P10, P50 and P90 reservoir models. In Canadian international petroleum conference. Petroleum Society of Canada. https://doi.org/10.2118/2008-188

  • Du, B. Y., Yang, W. Y., Zhang, J., Yong, X. S., Gao, J. H., & Li, H. S. (2019). Matrix-fluid decoupling-based joint PP-PS-wave seismic inversion for fluid identification. Geophysics, 84(3), R477–R487.

    Article  Google Scholar 

  • Gao, J. H., Song, Z. H., Gui, J. Y., & Yuan, S. Y. (2020). Gas-bearing prediction using transfer learning and CNNs: An application to a deep tight dolomite reservoir. IEEE Geoscience and Remote Sensing Letters, 99, 3001005.

    Google Scholar 

  • He, B. S., Yao, X. R., & Shao, X. Q. (2022). Source-free P-SV converted-wave reverse-time migration using first-order velocity-dilatation-rotation equations. Frontiers in Earth Science, 10, 749462.

    Article  Google Scholar 

  • Hossain, S. (2020). Application of seismic attribute analysis in fluvial seismic geomorphology. Journal of Petroleum Exploration and Production Technologies, 10(3), 1009–1019.

    Article  Google Scholar 

  • Huang, J.Y., Smola, A.J., Gretton, A., Borgwardt, K.M., Scholkopf, B. (2006). Correcting sample selection bias by unlabeled data. In Proceedings of the International Conference on Neural Information Processing Systems (pp. 601–608).

  • Hui, G., Chen, Z. X., Wang, Y. J., Zhang, D. M., & Gu, F. (2023). An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity. Energy, 266, 126512.

    Article  CAS  Google Scholar 

  • Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M. (2016). Real-time motor fault detection by 1-D convolutional neural networks. IEEE Transactions on Industrial Electronics, 63(11), 7067–7075.

    Article  Google Scholar 

  • Jeong, H., Sun, A. Y., Lee, J., & Min, B. (2018). A learning-based data-driven forecast approach for predicting future reservoir performance. Advances in Water Resources, 118, 95–109.

    Article  Google Scholar 

  • Karimpouli, S., Tahmasebi, P., & Saenger, E. H. (2020). Coal cleat/fracture segmentation using convolutional neural networks. Natural Resources Research, 29, 1675–1685.

    Article  CAS  Google Scholar 

  • Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 60, 1097–1105.

    Google Scholar 

  • Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 30, 6402–6413.

    Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

    Article  CAS  Google Scholar 

  • Lee, H., Jang, T., & Moon, K. (2017). Anticipating human errors from periodic big survey data in nuclear power plants. International Conference on Big Data. https://doi.org/10.1109/bigdata.2017.8258539

    Article  Google Scholar 

  • Lin, N. T., Zhang, D., Zhang, K., Wang, S. J., Fu, C., & Zhang, J. B. (2018). Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network. Chinese Journal of Geophysics, 061(010), 4110–4125.

    Google Scholar 

  • Liu, N. H., Wang, J. L., Gao, J. H., Chang, S. J., & Lou, Y. H. (2022). Similarity-informed self-learning and its application on seismic image denoising. IEEE Transactions on Geoscience and Remote Sensing, 60, 5921113.

    Article  Google Scholar 

  • Lou, Y. H., Li, S. Z., Li, S. J., Liu, N. H., & Zhang, B. (2022). Seismic volumetric dip estimation via multichannel deep learning model. IEEE Transactions on Geoscience and Remote Sensing, 60, 4511014.

    Article  Google Scholar 

  • Martin, G. S., Wiley, R., & Marfurt, K. J. (2006). Marmousi2: An elastic upgrade for Marmousi. The Leading Edge, 25(2), 113–224.

    Article  Google Scholar 

  • Mulashani, A. K., Shen, C. B., Asante-Okyere, S., Kerttu, P. N., & Abelly, E. N. (2021). Group method of data handling (GMDH) neural network for estimating total organic carbon (TOC) and hydrocarbon potential distribution (S1, S2) using well logs. Natural Resources Research, 30, 3605–3622.

    Article  Google Scholar 

  • Na’imi, S. R., Shadizadeh, S. R., Riahi, M. A., & Mirzakhanian, M. (2014). Estimation of reservoir porosity and water saturation based on seismic attributes using support vector regression approach. Journal of Applied Geophysics, 107, 93–101.

    Article  Google Scholar 

  • Ostrander, W. J. (1984). Plane wave reflection coefficients for gas sands at non normal angles of incidence. Geophysics, 49(10), 1637–1648.

    Article  Google Scholar 

  • Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359.

    Article  Google Scholar 

  • Pham, N., Fomel, S., & Dunlap, D. (2019). Automatic channel detection using deep learning. Interpretation, 7(3), SE43–SE50.

    Article  Google Scholar 

  • Ramesh, A., Satyavani, N., & Attar, M. R. S. (2021). Improved feature extraction in seismic data: Multi-attribute study from principal component analysis. Geo-Marine Letters, 41, 48.

    Article  Google Scholar 

  • Sang, W. S., Yuan, S. Y., Han, H. W., Liu, H. J., & Yu, Y. (2022). Porosity prediction using semi-supervised learning with biased well log data for improving estimation accuracy and reducing prediction uncertainty. Geophysical Journal International, 232(2), 940–957.

    Article  Google Scholar 

  • Shin, D., & Yoo, S. (2023). Diagnostic method for PEM fuel cell states using probability distribution-based loss component analysis for voltage loss decomposition. Applied Energy, 330, 120340.

    Article  Google Scholar 

  • Song, Z. H., Yuan, S. Y., Li, Z. M., & Wang, S. X. (2022). KNN-based gas-bearing prediction using local waveform similarity gas-indication attribute—An application to a tight sandstone reservoir. Interpretation, 10(1), SA25–SA33.

    Article  Google Scholar 

  • Sun, J., Innanen, K. A., & Huang, C. (2021). Physics-guided deep learning for seismic inversion with hybrid training and uncertainty analysis. Geophysics, 86, R303–R317.

    Article  Google Scholar 

  • Sun, J., Niu, Z., Innanen, K. A., Li, J. X., & Trad, D. O. (2020). A theory-guided deep-learning formulation and optimization of seismic waveform inversion. Geophysics, 85, R87–R99.

    Article  Google Scholar 

  • Tavakolizadeh, N., & Bagheri, M. (2022). Multi-attribute selection for salt dome detection based on SVM and MLP machine learning techniques. Natural Resources Research, 31, 353–370.

    Article  Google Scholar 

  • Wang, J., & Cao, J. X. (2021). Data-driven S-wave velocity prediction method via a deep-learning-based deep convolutional gated recurrent unit fusion network. Geophysics, 86(6), 1ND-Z3.

    Article  Google Scholar 

  • Wang, J., Cao, J. X., Fu, J. C., & Xu, H. Q. (2022a). Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism. Energy, 261, 125270.

    Article  Google Scholar 

  • Wang, S., Qin, C. X., Feng, Q. H., Javadpour, F., & Rui, Z. H. (2021). A framework for predicting the production performance of unconventional resources using deep learning. Applied Energy, 295, 117016.

    Article  Google Scholar 

  • Wang, X. P., Zuo, R. G., & Wang, Z. Y. (2022b). Lithological mapping using a convolutional neural network based on stream sediment geochemical survey data. Natural Resources Research, 31, 2397–2412.

    Article  CAS  Google Scholar 

  • Weir, R. M., Eaton, D. W., Lines, L. R., Lawton, D. C., & Ekpo, E. (2018). Inversion and interpretation of seismic-derived rock properties in the Duvernay play. Interpretation, 6(2), SE1–SE14.

    Article  Google Scholar 

  • Yang, J. J., He, B. S., & Zhang, Z. J. (2014). Multicomponent seismic forward modeling of gas hydrates beneath the seafloor. Applied Geophysics, 11, 418–428.

    Article  Google Scholar 

  • Yang, J. Q., Lin, N. T., Zhang, K., Ding, R. W., Jin, Z. W., & Wang, D. Y. (2023a). A data-driven workflow based on multisource transfer machine learning for gas-bearing probability distribution prediction: A case study. Geophysics, 88, B163–B177.

    Article  Google Scholar 

  • Yang, J. Q., Lin, N. T., Zhang, K., Fu, C., Cui, Y., & Li, G. H. (2023b). An improved small-sample method based on APSO–LSSVM for gas-bearing probability distribution prediction from multicomponent seismic data. IEEE Geoscience and Remote Sensing Letters, 20, 7501705.

    Google Scholar 

  • Yang, J. Q., Lin, N. T., Zhang, K., Zhang, C., Fu, C., Tian, G. P., & Song, C. Y. (2021). Reservoir characterization using multi-component seismic data in a novel hybrid model based on clustering and deep neural network. Natural Resources Research, 30, 3429–3454.

    Article  Google Scholar 

  • Youssef, A. M., Pradhan, B., Dikshit, A., Al-Katheri, M. M., Matar, S. S., & Mahdi, A. M. (2022). Landslide susceptibility mapping using CNN-1D and 2D deep learning algorithms: Comparison of their performance at Asir Region, KSA. Bulletin of Engineering Geology and the Environment, 81, 165.

    Article  Google Scholar 

  • Yuan, S. K., DeAngelo, M. V., & Hardage, B. A. (2014). Interpretation of fractures and joint inversion using multicomponent seismic data—Marcellus Shale example. Interpretation, 2(2), SE55–SE62.

    Article  Google Scholar 

  • Yuan, S. Y., Liu, J. W., Wang, S. X., Wang, T. Y., & Shi, P. D. (2018). Seismic waveform classification and first-break picking using convolution neural networks. IEEE Geoscience and Remote Sensing Letters, 15(2), 272–276.

    Article  Google Scholar 

  • Yuan, Y., Liu, Y., Zhang, J. Y., Wei, X. C., & Chen, T. S. (2011). Reservoir prediction using multi-wave seismic attributes. Earthquake Science, 24, 373–389.

    Article  Google Scholar 

  • Zang, H. X., Xu, R. Q., Cheng, L. I., Ding, T., Liu, L., Wei, Z. N., & Sun, G. Q. (2021). Residential load forecasting based on LSTM fusing self-attention mechanism with pooling. Energy, 229, 120682.

    Article  Google Scholar 

  • Zare, A., Ozdemir, A., Iwen, M. A., & Aviyente, S. (2018). Extension of PCA to higher order data structures: An introduction to tensors, tensor decompositions, and tensor PCA. Proceedings of the IEEE, 106(8), 1341–1358.

    Article  Google Scholar 

  • Zhang, G. Z., Yang, R., Zhou, Y., Li, L., & Du, B. Y. (2022a). Seismic fracture characterization in tight sand reservoirs: A case study of the Xujiahe Formation, Sichuan Basin, China. Journal of Applied Physics, 203, 104690.

    Google Scholar 

  • Zhang, J., Li, J. Y., Chen, X. H., & Li, Y. Q. (2021). Seismic lithology/fluid predictionvia a hybrid ISD–CNN. IEEE Geoscience and Remote Sensing Letters, 18(1), 13–17.

    Article  Google Scholar 

  • Zhang, K., Lin, N. T., Fu, C., Zhang, D., Jin, X., & Zhang, C. (2019). Reservoir characterization method with multi-component seismic data by unsupervised learning and colour feature blending. Exploration Geophysics, 50(3), 269–280.

    Article  Google Scholar 

  • Zhang, K., Lin, N. T., Yang, J. Q., Jin, Z. W., Li, G. H., & Ding, R. W. (2022b). Predicting gas bearing distribution using DNN based on multi-component seismic data: A reservoir quality evaluation using structural and fracture evaluation factors. Petroleum Science, 19(4), 1566–1581.

    Article  Google Scholar 

  • Zhang, K., Lin, N. T., Yang, J. Q., Zhang, D., Cui, Y., & Jin, Z. W. (2023). An intelligent approach for gas reservoir identification and structural evaluation by ANN and Viterbi algorithm—A case study from the Xujiahe Formation, Western Sichuan Depression, China. IEEE Transactions on Geoscience and Remote Sensing, 61, 5904412.

    Google Scholar 

  • Zhao, J. F., Mao, X., & Chen, L. J. (2019). Speech emotion recognition using deep 1D and 2D CNN LSTM networks. Biomedical Signal Processing and Control, 47, 312–323.

    Article  Google Scholar 

  • Zhou, P., Zhang, R. Y., Xie, J., Liu, J. P., Wang, H., & Chai, T. Y. (2021). Data-driven monitoring and diagnosing of abnormal furnace conditions in blast furnace ironmaking: An integrated PCA–ICA method. IEEE Transactions on Industrial Electronics, 68(1), 22–631.

    Article  Google Scholar 

  • Zong, Z. Y., Yin, X. Y., & Wu, G. C. (2016). Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters. Journal of Applied Geophysics, 131, 84–93.

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by the Natural Science Foundation of Shandong Province (ZR2023QD025; ZR2021MD061), China Postdoctoral Science Foundation (2022M721972), National Natural Science Foundation of China (41174098), Natural Science Basic Research Program of Shaanxi (2022JQ-274), Young Talents Foundation of Inner Mongolia University (10000-23112101/055), and Qingdao Postdoctoral Science Foundation (QDBSH20230102094). We would also like to thank Xiucheng Wei, Hong Liu, Jianwen Chen, and Hong Chen for their valuable contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Lin, N., Zhang, K. et al. A Framework for Predicting the Gas-Bearing Distribution of Unconventional Reservoirs by Deep Learning. Nat Resour Res (2024). https://doi.org/10.1007/s11053-024-10345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11053-024-10345-1

Keywords

Navigation