skip to main content
survey
Free Access
Just Accepted

A Review on the Impact of Data Representation on Model Explainability

Online AM:29 April 2024Publication History
Skip Abstract Section

Abstract

In recent years, advanced machine learning and artificial intelligence techniques have gained popularity due to their ability to solve problems across various domains with high performance and quality. However, these techniques are often so complex that they fail to provide simple and understandable explanations for the outputs they generate. To address this issue, the field of explainable artificial intelligence has recently emerged. On the other hand, most data generated in different domains are inherently structural; that is, they consist of parts and relationships among them. Such data can be represented using either a simple data-structure or form, such as a vector, or a complex data-structure, such as a graph. The effect of this representation form on the explainability and interpretability of machine learning models is not extensively discussed in the literature. In this survey paper, we review efficient algorithms proposed for learning from inherently structured data, emphasizing how their representation form affects the explainability of learning models. A conclusion of our literature review is that using complex forms or data-structures for data representation improves not only the learning performance, but also the explainability and transparency of the model.

References

  1. Frank Emmert-Streib, Olli Yli-Harja, and Matthias Dehmer. 2020. Explainable artificial intelligence and machine learning: A reality rooted perspective. WIREs Data Mining and Knowledge Discovery 10, 6 (2020), e1368. DOI: http://dx.doi.org/10.1002/widm.1368 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1368Google ScholarGoogle ScholarCross RefCross Ref
  2. Arun Rai. 2019. Explainable AI: from black box to glass box. Journal of the Academy of Marketing Science 48 (12 2019). DOI: http://dx.doi.org/10.1007/s11747-019-00710-5Google ScholarGoogle ScholarCross RefCross Ref
  3. Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal, and Heimo Muller. 2019. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, 4 (2019). DOI: http://dx.doi.org/10.1002/widm.1312Google ScholarGoogle ScholarCross RefCross Ref
  4. Ashley Deeks. 2019. THE JUDICIAL DEMAND FOR EXPLAINABLE ARTIFICIAL INTELLIGENCE. Columbia Law Review 119, 7 (2019), 1829–1850. https://www.jstor.org/stable/26810851Google ScholarGoogle Scholar
  5. Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58(2020), 82 – 115. DOI: http://dx.doi.org/10.1016/j.inffus.2019.12.012Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2020. Explainability in Graph Neural Networks: A Taxonomic Survey. CoRR abs/2012.15445(2020). arXiv:2012.15445 https://arxiv.org/abs/2012.15445Google ScholarGoogle Scholar
  7. Ch.V Raghavendran and Ganti Naga Satish. February 21, 2019. Data Structures through C++ – A quick reference. Scholars’ Press.Google ScholarGoogle Scholar
  8. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois Yergeau. November 2008. eXtensible Markup Language (XML) 1.0 (Fifth Edition). https://www.w3.org/TR/xml/. (November 2008).Google ScholarGoogle Scholar
  9. Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2018. A Survey of Methods for Explaining Black Box Models. Comput. Surveys 51, 5 (2018), 1–42. DOI: http://dx.doi.org/10.1145/3236009Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Lukas-Valentin Herm, Kai Heinrich, Jonas Wanner, and Christian Janiesch. 2022. Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. International Journal of Information Management (2022), 102538. DOI: http://dx.doi.org/10.1016/j.ijinfomgt.2022.102538Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2021. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 23, 1 (2021). DOI: http://dx.doi.org/10.3390/e23010018Google ScholarGoogle ScholarCross RefCross Ref
  12. Maria Sahakyan, Zeyar Aung, and Talal Rahwan. 2021. Explainable Artificial Intelligence for Tabular Data: A Survey. IEEE Access 9(2021), 135392–135422. DOI: http://dx.doi.org/10.1109/ACCESS.2021.3116481Google ScholarGoogle ScholarCross RefCross Ref
  13. Mohammed Javeed Zaki and Charu C. Aggarwal. 2003. XRules: an effective structural classifier for XML data. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003, Lise Getoor, Ted E. Senator, Pedro M. Domingos, and Christos Faloutsos (Eds.). ACM, 316–325. DOI: http://dx.doi.org/10.1145/956750.956787Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Siegfried Nijssen and Joost N. Kok. 2004. A quickstart in frequent structure mining can make a difference. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22-25, 2004, Won Kim, Ron Kohavi, Johannes Gehrke, and William DuMouchel (Eds.). ACM, 647–652. DOI: http://dx.doi.org/10.1145/1014052.1014134Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mostafa Haghir Chehreghani, Morteza Haghir Chehreghani, Caro Lucas, and Masoud Rahgozar. 2011. OInduced: An Efficient Algorithm for Mining Induced Patterns From Rooted Ordered Trees. IEEE Trans. Syst. Man Cybern. Part A 41, 5 (2011), 1013–1025. DOI: http://dx.doi.org/10.1109/TSMCA.2010.2096808Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mostafa Haghir Chehreghani. 2011. Efficiently Mining Unordered Trees. In 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, Diane J. Cook, Jian Pei, Wei Wang, Osmar R. Zaïane, and Xindong Wu (Eds.). IEEE Computer Society, 111–120. DOI: http://dx.doi.org/10.1109/ICDM.2011.62Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Mohammed Javeed Zaki. 2005. Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications. IEEE Trans. Knowl. Data Eng. 17, 8 (2005), 1021–1035. DOI: http://dx.doi.org/10.1109/TKDE.2005.125Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mohammed Javeed Zaki. 2005. Efficiently Mining Frequent Embedded Unordered Trees. Fundam. Informaticae 66, 1-2 (2005), 33–52. http://content.iospress.com/articles/fundamenta-informaticae/fi66-1-2-03Google ScholarGoogle Scholar
  19. Mostafa Haghir Chehreghani and Maurice Bruynooghe. 2016. Mining rooted ordered trees under subtree homeomorphism. Data Min. Knowl. Discov. 30, 5 (2016), 1249–1272. DOI: http://dx.doi.org/10.1007/s10618-015-0439-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mostafa Haghir Chehreghani and Morteza Haghir Chehreghani. 2016. Transactional Tree Mining. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken (Eds.), Vol.  9851. Springer, 182–198. DOI: http://dx.doi.org/10.1007/978-3-319-46128-1_12Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mostafa Haghir Chehreghani, Morteza Haghir Chehreghani, Caro Lucas, Masoud Rahgozar, and Euhanna Ghadimi. 2009. Efficient rule based structural algorithms for classification of tree structured data. Intell. Data Anal. 13, 1 (2009), 165–188. DOI: http://dx.doi.org/10.3233/IDA-2009-0361Google ScholarGoogle ScholarCross RefCross Ref
  22. Diane Cook and Lawrence Holder. 2000. Graph-Based Data Mining. Intelligent Systems and their Applications, IEEE 15 (04 2000), 32 – 41. DOI: http://dx.doi.org/10.1109/5254.850825Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. (2017). http://archive.ics.uci.edu/mlGoogle ScholarGoogle Scholar
  24. J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jesus Gonzalez, Lawrence Holder, and Diane Cook. 2001. Application of Graph-Based Concept Learning to the Predictive Toxicology Domain. In PTC, Workshop atthe 5th PKDD.Google ScholarGoogle Scholar
  26. Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis. 2005. Frequent Substructure-Based Approaches for Classifying Chemical Compounds. IEEE Trans. Knowl. Data Eng. 17, 8 (2005), 1036–1050. DOI: http://dx.doi.org/10.1109/TKDE.2005.127Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hong Cheng, Xifeng Yan, and Jiawei Han. 2010. Discriminative Frequent Pattern-Based Graph Classification. Springer New York, New York, NY, 237–262. DOI: http://dx.doi.org/10.1007/978-1-4419-6515-8_9Google ScholarGoogle ScholarCross RefCross Ref
  28. Deepak Bandyopadhyay, Jun Huan, Jinze Liu, Jan Prins, Jack Snoeyink, Wei Wang, and Alexander Tropsha. 2006. Structure-based function inference using protein family-specific fingerprints. Protein Science 15, 6 (2006), 1537–1543. DOI: http://dx.doi.org/10.1110/ps.062189906 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1110/ps.062189906Google ScholarGoogle ScholarCross RefCross Ref
  29. Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. 1995. SCOP: A structural classification of proteins database for the investigation of sequences and structures. Journal of molecular biology 247, 4 (1995), 536–540.Google ScholarGoogle ScholarCross RefCross Ref
  30. Julian R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (1976), 31–42. DOI: http://dx.doi.org/10.1145/321921.321925Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Chuntao Jiang, Frans Coenen, and Michele Zito. 2010. Frequent Sub-graph Mining on Edge Weighted Graphs. In Data Warehousing and Knowledge Discovery, 12th International Conference, DAWAK 2010, Bilbao, Spain, August/September 2010. Proceedings (Lecture Notes in Computer Science), Torben Bach Pedersen, Mukesh K. Mohania, and A Min Tjoa (Eds.), Vol.  6263. Springer, 77–88. DOI: http://dx.doi.org/10.1007/978-3-642-15105-7_7Google ScholarGoogle ScholarCross RefCross Ref
  32. Bahadir Özdemir and Selim Aksoy. 2010. Image Classification Using Subgraph Histogram Representation. In 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23-26 August 2010. IEEE Computer Society, 1112–1115. DOI: http://dx.doi.org/10.1109/ICPR.2010.278Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Franz Aurenhammer. 1991. Voronoi Diagrams—a Survey of a Fundamental Geometric Data Structure. ACM Comput. Surv. 23, 3 (sep 1991), 345–405. DOI: http://dx.doi.org/10.1145/116873.116880Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Fei-Fei Li and Pietro Perona. 2005. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA. IEEE Computer Society, 524–531. DOI: http://dx.doi.org/10.1109/CVPR.2005.16Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Niusvel Acosta-Mendoza, Andrés Gago Alonso, and José Eladio Medina-Pagola. 2012. Frequent approximate subgraphs as features for graph-based image classification. Knowl. Based Syst. 27(2012), 381–392. DOI: http://dx.doi.org/10.1016/j.knosys.2011.12.002Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sebastian Nowozin, Koji Tsuda, Takeaki Uno, Taku Kudo, and Gökhan H. Bakir. 2007. Weighted Substructure Mining for Image Analysis. In 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA. IEEE Computer Society. DOI: http://dx.doi.org/10.1109/CVPR.2007.383171Google ScholarGoogle ScholarCross RefCross Ref
  37. Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. 2003. Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Mach. Learn. 50, 3 (2003), 321–354. DOI: http://dx.doi.org/10.1023/A:1021726221443Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City, Japan. IEEE Computer Society, 721–724. DOI: http://dx.doi.org/10.1109/ICDM.2002.1184038Google ScholarGoogle ScholarCross RefCross Ref
  39. Mohammad Al Hasan and Mohammed J. Zaki. 2009. Output Space Sampling for Graph Patterns. Proc. VLDB Endow. 2, 1 (2009), 730–741. DOI: http://dx.doi.org/10.14778/1687627.1687710Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Chuntao Jiang, Frans Coenen, and Michele Zito. 2013. A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 28, 1 (2013), 75–105. DOI: http://dx.doi.org/10.1017/S0269888912000331Google ScholarGoogle ScholarCross RefCross Ref
  41. Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. 2000. An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. In Principles of Data Mining and Knowledge Discovery, 4th European Conference, PKDD 2000, Lyon, France, September 13-16, 2000, Proceedings (Lecture Notes in Computer Science), Djamel A. Zighed, Henryk Jan Komorowski, and Jan M. Zytkow (Eds.), Vol.  1910. Springer, 13–23. DOI: http://dx.doi.org/10.1007/3-540-45372-5_2Google ScholarGoogle ScholarCross RefCross Ref
  42. W. K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57, 1 (1970), 97–109. http://www.jstor.org/stable/2334940Google ScholarGoogle ScholarCross RefCross Ref
  43. Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet, and Meriem Bouzbila. 2020. Sampling informative patterns from large single networks. Future Gener. Comput. Syst. 106 (2020), 653–658. DOI: http://dx.doi.org/10.1016/j.future.2020.01.042Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning Convolutional Neural Networks for Graphs. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.), Vol.  48. JMLR.org, 2014–2023. http://proceedings.mlr.press/v48/niepert16.htmlGoogle ScholarGoogle Scholar
  45. Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYglGoogle ScholarGoogle Scholar
  46. Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.net/forum?id=rJXMpikCZGoogle ScholarGoogle Scholar
  47. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2009. The Graph Neural Network Model. IEEE Trans. Neural Networks 20, 1 (2009), 61–80. DOI: http://dx.doi.org/10.1109/TNN.2008.2005605Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated Graph Sequence Neural Networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.05493Google ScholarGoogle Scholar
  49. Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL. 1724–1734. DOI: http://dx.doi.org/10.3115/v1/d14-1179Google ScholarGoogle ScholarCross RefCross Ref
  50. Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alexander J. Smola, and Le Song. 2018. Learning Steady-States of Iterative Algorithms over Graphs. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research), Jennifer G. Dy and Andreas Krause (Eds.), Vol.  80. PMLR, 1114–1122. http://proceedings.mlr.press/v80/dai18a.htmlGoogle ScholarGoogle Scholar
  51. Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 4602–4609. DOI: http://dx.doi.org/10.1609/aaai.v33i01.33014602Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Luca Pasa, Nicolò Navarin, and Alessandro Sperduti. 2020. Deep Recurrent Graph Neural Networks. In 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2020, Bruges, Belgium, October 2-4, 2020. 157–162. https://www.esann.org/sites/default/files/proceedings/2020/ES2020-107.pdfGoogle ScholarGoogle Scholar
  53. Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. 3.Google ScholarGoogle Scholar
  54. Alessio Micheli. 2009. Neural Network for Graphs: A Contextual Constructive Approach. IEEE Trans. Neural Networks 20, 3 (2009), 498–511. DOI: http://dx.doi.org/10.1109/TNN.2008.2010350Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Dinh Van Tran, Nicolò Navarin, and Alessandro Sperduti. 2018. On Filter Size in Graph Convolutional Networks. In IEEE Symposium Series on Computational Intelligence, SSCI 2018, Bangalore, India, November 18-21, 2018. IEEE, 1534–1541. DOI: http://dx.doi.org/10.1109/SSCI.2018.8628758Google ScholarGoogle ScholarCross RefCross Ref
  56. Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.), Vol.  70. PMLR, 1263–1272. http://proceedings.mlr.press/v70/gilmer17a.htmlGoogle ScholarGoogle Scholar
  57. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/forum?id=ryGs6iA5KmGoogle ScholarGoogle Scholar
  58. William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 1024–1034. http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphsGoogle ScholarGoogle Scholar
  59. Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. 2019. GNNExplainer: Generating Explanations for Graph Neural Networks. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 9240–9251. https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.htmlGoogle ScholarGoogle Scholar
  60. Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. 2021. Node Similarity Preserving Graph Convolutional Networks. In 14th ACM International Conference on Web Search and Data Mining (WSDM) 2021, Jerusalem, Israel, March 8-12, 2021. ACM.Google ScholarGoogle Scholar
  61. Zhenyu Yang, Ge Zhang, Jia Wu, Jian Yang, Quan Z. Sheng, Hao Peng, Angsheng Li, Shan Xue, and Jianlin Su. 2023. Minimum Entropy Principle Guided Graph Neural Networks. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (WSDM ’23). Association for Computing Machinery, New York, NY, USA, 114–122. DOI: http://dx.doi.org/10.1145/3539597.3570467Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Jooyeon Kim, Angus Lamb, Simon Woodhead, Simon Peyton Jones, Cheng Zhang, and Miltiadis Allamanis. 2022. CoRGi: Content-Rich Graph Neural Networks with Attention. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22). Association for Computing Machinery, New York, NY, USA, 773–783. DOI: http://dx.doi.org/10.1145/3534678.3539306Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. 2022. Orthogonal Graph Neural Networks. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. 3996–4004. https://ojs.aaai.org/index.php/AAAI/article/view/20316Google ScholarGoogle ScholarCross RefCross Ref
  64. Liang Yang, Cheng Chen, Weixun Li, Bingxin Niu, Junhua Gu, Chuan Wang, Dongxiao He, Yuanfang Guo, and Xiaochun Cao. 2022. Self-Supervised Graph Neural Networks via Diverse and Interactive Message Passing. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. 4327–4336. https://ojs.aaai.org/index.php/AAAI/article/view/20353Google ScholarGoogle ScholarCross RefCross Ref
  65. Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. 2023. MM-GNN: Mix-Moment Graph Neural Network towards Modeling Neighborhood Feature Distribution. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March 2023, Tat-Seng Chua, Hady W. Lauw, Luo Si, Evimaria Terzi, and Panayiotis Tsaparas (Eds.). ACM, 132–140. DOI: http://dx.doi.org/10.1145/3539597.3570457Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Kimiko O. Bowman and L. R. Shenton. 1998. Estimation: Method of Moments. In Encyclopedia of statistical sciences. Wiley, 2092–2098.Google ScholarGoogle Scholar
  67. Srinivas Virinchi and Anoop Saladi. 2023. BLADE: Biased Neighborhood Sampling based Graph Neural Network for Directed Graphs. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March 2023. 42–50. DOI: http://dx.doi.org/10.1145/3539597.3570430Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. DOI: http://dx.doi.org/10.1109/TNNLS.2020.2978386Google ScholarGoogle ScholarCross RefCross Ref
  69. Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic Graphs: A Survey. J. Mach. Learn. Res. 21(2020), 70:1–70:73. http://jmlr.org/papers/v21/19-447.htmlGoogle ScholarGoogle Scholar
  70. Mostafa Haghir Chehreghani. 2021. Dynamical algorithms for data mining and machine learning over dynamic graphs. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 11, 2 (2021). DOI: http://dx.doi.org/10.1002/widm.1393Google ScholarGoogle ScholarCross RefCross Ref
  71. Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (Eds.). ACM, 701–710. DOI: http://dx.doi.org/10.1145/2623330.2623732Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM, 855–864. DOI: http://dx.doi.org/10.1145/2939672.2939754Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 135–144. DOI: http://dx.doi.org/10.1145/3097983.3098036Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural Networks. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 5171–5181. https://proceedings.neurips.cc/paper/2018/hash/53f0d7c537d99b3824f0f99d62ea2428-Abstract.htmlGoogle ScholarGoogle Scholar
  75. Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural Graph Collaborative Filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, Benjamin Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.). ACM, 165–174. DOI: http://dx.doi.org/10.1145/3331184.3331267Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, Jimmy X. Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 639–648. DOI: http://dx.doi.org/10.1145/3397271.3401063Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-Based Recommendation with Graph Neural Networks. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 346–353. DOI: http://dx.doi.org/10.1609/aaai.v33i01.3301346Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Srinivas Virinchi, Anoop Saladi, and Abhirup Mondal. 2022. Recommending Related Products Using Graph Neural Networks in Directed Graphs. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Grenoble, France, September 19-23, 2022, Proceedings, Part I (Lecture Notes in Computer Science), Massih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas (Eds.), Vol.  13713. Springer, 541–557. DOI: http://dx.doi.org/10.1007/978-3-031-26387-3_33Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Yu Zheng, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2023. Incorporating Price into Recommendation With Graph Convolutional Networks. IEEE Trans. Knowl. Data Eng. 35, 2 (2023), 1609–1623. DOI: http://dx.doi.org/10.1109/TKDE.2021.3091160Google ScholarGoogle ScholarCross RefCross Ref
  80. Li He, Xianzhi Wang, Dingxian Wang, Haoyuan Zou, Hongzhi Yin, and Guandong Xu. 2023. Simplifying Graph-based Collaborative Filtering for Recommendation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27 February 2023 - 3 March 2023, Tat-Seng Chua, Hady W. Lauw, Luo Si, Evimaria Terzi, and Panayiotis Tsaparas (Eds.). ACM, 60–68. DOI: http://dx.doi.org/10.1145/3539597.3570451Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2023. Graph Neural Networks in Recommender Systems: A Survey. ACM Comput. Surv. 55, 5 (2023), 97:1–97:37. DOI: http://dx.doi.org/10.1145/3535101Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and Fragkiskos D Malliaros. 2019. Semi-supervised learning and graph neural networks for fake news detection. In 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 568–569.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation. In Empirical Methods in Natural Language Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-1162Google ScholarGoogle Scholar
  84. Lawrence Cayton. 2008. Fast Nearinproceedingsest Neighbor Retrieval for Bregman Divergences. In Proceedings of the 25th International Conference on Machine Learning (ICML ’08). Association for Computing Machinery, New York, NY, USA, 112–119. DOI: http://dx.doi.org/10.1145/1390156.1390171Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. 2019. Spam Review Detection with Graph Convolutional Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.). ACM, 2703–2711. DOI: http://dx.doi.org/10.1145/3357384.3357820Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Chang Li and Dan Goldwasser. 2019. Encoding Social Information with Graph Convolutional Networks forPolitical Perspective Detection in News Media. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, 2594–2604. DOI: http://dx.doi.org/10.18653/v1/p19-1247Google ScholarGoogle ScholarCross RefCross Ref
  87. Na Bai, Fanrong Meng, Xiaobin Rui, and Zhixiao Wang. 2021. Rumour Detection Based on Graph Convolutional Neural Net. IEEE Access 9(2021), 21686–21693. DOI: http://dx.doi.org/10.1109/ACCESS.2021.3050563Google ScholarGoogle ScholarCross RefCross Ref
  88. Chenguang Song, Yiyang Teng, Yangfu Zhu, Siqi Wei, and Bin Wu. 2022. Dynamic graph neural network for fake news detection. Neurocomputing 505(2022), 362–374. DOI: http://dx.doi.org/10.1016/j.neucom.2022.07.057Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Huyen Trang Phan, Ngoc Thanh Nguyen, and Dosam Hwang. 2023. Fake news detection: A survey of graph neural network methods. Applied Soft Computing 139 (2023), 110235. DOI: http://dx.doi.org/10.1016/j.asoc.2023.110235Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Xiaoyong Pan and Hong-Bin Shen. 2019. Inferring Disease-Associated MicroRNAs Using Semi-supervised Multi-Label Graph Convolutional Networks. iScience 20(2019), 265–277. DOI: http://dx.doi.org/10.1016/j.isci.2019.09.013Google ScholarGoogle ScholarCross RefCross Ref
  91. Heng Yao, Jihong Guan, and Tianying Liu. 2020. Denoising Protein–Protein interaction network via variational graph auto-encoder for protein complex detection. Journal of Bioinformatics and Computational Biology 18, 03(2020), 2040010. DOI: http://dx.doi.org/10.1142/S0219720020400107 PMID: 32698725.Google ScholarGoogle ScholarCross RefCross Ref
  92. Xianggen Liu, Yunan Luo, Sen Song, and Jian Peng. 2020. Pre-training of graph neural network for modeling effects of mutations on protein-protein binding affinity. arXiv preprint arXiv:2008.12473(2020).Google ScholarGoogle Scholar
  93. Manali Singha, Limeng Pu, Abd-El-Monsif Shawky, Konstantin Busch, Hsiao-Chun Wu, J Ramanujam, and Michal Brylinski. 2020. GraphGR: A graph neural network to predict the effect of pharmacotherapy on the cancer cell growth. bioRxiv (2020), 2020–05.Google ScholarGoogle Scholar
  94. Zichen Wang, Mu Zhou, and Corey Arnold. 2020. Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing. Bioinformatics 36, Supplement_1 (2020), i525–i533.Google ScholarGoogle ScholarCross RefCross Ref
  95. Hryhorii Chereda, Annalen Bleckmann, Kerstin Menck, Júlia Perera-Bel, Philip Stegmaier, Florian Auer, Frank Kramer, Andreas Leha, and Tim Beißbarth. 2021. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer. Genome medicine 13(2021), 1–16.Google ScholarGoogle Scholar
  96. Tianyi Zhao, Yang Hu, Linda R Valsdottir, Tianyi Zang, and Jiajie Peng. 2021. Identifying drug–target interactions based on graph convolutional network and deep neural network. Briefings in bioinformatics 22, 2 (2021), 2141–2150.Google ScholarGoogle Scholar
  97. Manon Reau, Nicolas Renaud, Li C Xue, and Alexandre M J J Bonvin. 2023. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces. Bioinformatics 39, 1 (1 2023). DOI: http://dx.doi.org/10.1093/bioinformatics/btac759 arXiv:https://academic.oup.com/bioinformatics/article-pdf/39/1/btac759/48448994/btac759.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  98. Xiao-Meng Zhang, Li Liang, Lin Liu, and Ming-Jing Tang. 2021. Graph neural networks and their current applications in bioinformatics. Frontiers in genetics 12 (2021), 690049.Google ScholarGoogle Scholar
  99. Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L Blundell, Michael M Bronstein, and Jake P Taylor-King. 2021. Utilizing graph machine learning within drug discovery and development. Briefings in Bioinformatics 22, 6 (05 2021). DOI: http://dx.doi.org/10.1093/bib/bbab159 bbab159.Google ScholarGoogle ScholarCross RefCross Ref
  100. Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li, Jian Pei, and Bo Long. 2023. Graph Neural Networks for Natural Language Processing: A Survey. Foundations and Trends® in Machine Learning 16, 2(2023), 119–328. DOI: http://dx.doi.org/10.1561/2200000096Google ScholarGoogle ScholarCross RefCross Ref
  101. Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.). Association for Computational Linguistics, 1506–1515. DOI: http://dx.doi.org/10.18653/v1/d17-1159Google ScholarGoogle ScholarCross RefCross Ref
  102. Mingzhou Xu, Liangyou Li, Derek F. Wong, Qun Liu, and Lidia S. Chao. 2021. Document Graph for Neural Machine Translation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, 8435–8448. DOI: http://dx.doi.org/10.18653/v1/2021.emnlp-main.663Google ScholarGoogle ScholarCross RefCross Ref
  103. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.htmlGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  104. Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng Yu, and Pascale Fung. 2020. Multi-hop Question Generation with Graph Convolutional Network. In Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20 November 2020 (Findings of ACL), Trevor Cohn, Yulan He, and Yang Liu (Eds.), Vol.  EMNLP 2020. Association for Computational Linguistics, 4636–4647. DOI: http://dx.doi.org/10.18653/v1/2020.findings-emnlp.416Google ScholarGoogle ScholarCross RefCross Ref
  105. Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuanjing Huang. 2020. Heterogeneous Graph Neural Networks for Extractive Document Summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics, 6209–6219. DOI: http://dx.doi.org/10.18653/v1/2020.acl-main.553Google ScholarGoogle ScholarCross RefCross Ref
  106. Chenxin An, Ming Zhong, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. 2021. Enhancing Scientific Papers Summarization with Citation Graph. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 12498–12506. https://ojs.aaai.org/index.php/AAAI/article/view/17482Google ScholarGoogle ScholarCross RefCross Ref
  107. Jingui Huang, Wenya Wu, Jingyi Li, and Shengchun Wang. 2023. Text Summarization Method Based on Gated Attention Graph Neural Network. Sensors 23, 3 (2023). DOI: http://dx.doi.org/10.3390/s23031654Google ScholarGoogle ScholarCross RefCross Ref
  108. Mostafa Haghir Chehreghani. 2022 (to appear),https://www.nature.com/articles/s42256-022-00466-8. Half a decade of graph convolutional networks. Nature Machine Intteligence(2022 (to appear),https://www.nature.com/articles/s42256-022-00466-8).Google ScholarGoogle Scholar
  109. Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol.  97. PMLR, 6861–6871. http://proceedings.mlr.press/v97/wu19e.htmlGoogle ScholarGoogle Scholar

Index Terms

  1. A Review on the Impact of Data Representation on Model Explainability

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys Just Accepted
          ISSN:0360-0300
          EISSN:1557-7341
          Table of Contents

          Copyright © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Online AM: 29 April 2024
          • Accepted: 22 April 2024
          • Revised: 16 December 2023
          • Received: 21 September 2022

          Check for updates

          Qualifiers

          • survey
        • Article Metrics

          • Downloads (Last 12 months)59
          • Downloads (Last 6 weeks)59

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader