Skip to main content
Log in

\(\mathcal {H}_2\) optimal rational approximation on general domains

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Optimal model reduction for large-scale linear dynamical systems is studied. In contrast to most existing works, the systems under consideration are not required to be stable, neither in discrete nor in continuous time. As a consequence, the underlying rational transfer functions are allowed to have poles in general domains in the complex plane. In particular, this covers the case of specific conservative partial differential equations such as the linear Schrödinger and the undamped linear wave equation with spectra on the imaginary axis. By an appropriate modification of the classical continuous time Hardy space \(\varvec{\mathcal {H}}_{\varvec{2}}\), a new \(\varvec{\mathcal {H}}_{\varvec{2}}\)-like optimal model reduction problem is introduced and first-order optimality conditions are derived. As in the classical \(\varvec{\mathcal {H}}_{\varvec{2}}\) case, these conditions exhibit a rational Hermite interpolation structure for which an iterative model reduction algorithm is proposed. Numerical examples demonstrate the effectiveness of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The code used for this paper is available in https://github.com/aaborghi/H2-arbitrary-domains.

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. Society for Industrial and Applied Mathematics, Philadelphia (2005). https://doi.org/10.1137/1.9780898718713

  2. Gugercin, S., Antoulas, A.C., Beattie, C.: \(\cal{H} _2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008). https://doi.org/10.1137/060666123

    Article  MathSciNet  Google Scholar 

  3. Meier, L., Luenberger, D.G.: Approximation of linear constant systems. IEEE Trans. Autom. Control 12, 585–588 (1967). https://doi.org/10.1109/TAC.1967.1098680

    Article  Google Scholar 

  4. Mullis, C.T., Roberts, R.A.: Synthesis of minimum roundoff noise fixed point digital filters. IEEE Trans. Circ. Syst. 23(9), 551–562 (1976). https://doi.org/10.1109/TCS.1976.1084254

    Article  MathSciNet  Google Scholar 

  5. Moore, B.C.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981). https://doi.org/10.1109/TAC.1981.1102568

    Article  MathSciNet  Google Scholar 

  6. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Math 339(9), 667–672 (2004). https://doi.org/10.1016/j.crma.2004.08.006

    Article  MathSciNet  Google Scholar 

  7. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15, 229–275 (2008). https://doi.org/10.1007/s11831-008-9019-9

    Article  MathSciNet  Google Scholar 

  8. Grimme, E.J.: Krylov projection methods for model reduction. Ph.D. Thesis, University of Illinois, Urbana-Champaign, Urbana, IL (1997)

  9. Freund, R.W.: Model reduction methods based on Krylov subspaces. Acta Numer. 12, 267–319 (2003). https://doi.org/10.1017/S0962492902000120

    Article  MathSciNet  Google Scholar 

  10. Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425(2), 634–662 (2007). https://doi.org/10.1016/j.laa.2007.03.008. (Special Issue in honor of Paul Fuhrmann)

    Article  MathSciNet  Google Scholar 

  11. Sirovich, L.: Turbulence and the dynamics of coherent structures, parts I. II and III. Q. Appl. Math. 45(3), 561–590 (1987). https://doi.org/10.1090/qam/910462

    Article  Google Scholar 

  12. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001). https://doi.org/10.1007/s002110100282

    Article  MathSciNet  Google Scholar 

  13. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc National Acad. Sci. 113(15), 3932–3937 (2016). https://doi.org/10.1073/pnas.1517384113

    Article  MathSciNet  Google Scholar 

  14. Kutz, J.N., Brunton, S.L., Brunton, B.W., Proctor, J.L.: Dynamic mode decomposition. Society for Industrial and Applied Mathematics, Philadelphia, PA (2016). https://doi.org/10.1137/1.9781611974508

  15. Peherstorfer, B., Willcox, K.: Data-driven operator inference for nonintrusive projection-based model reduction. Comput. Methods Appl. Mech. Eng. 306, 196–215 (2016). https://doi.org/10.1016/j.cma.2016.03.025

    Article  MathSciNet  Google Scholar 

  16. Hesthaven, J.S., Rozza, G., Stamm, G.: Certified reduced basis methods for parametrized partial differential equations. Springer, Cham, Switzerland (2015). https://doi.org/10.1007/978-3-319-22470-1

  17. Benner, P., Ohlberger, M., Cohen, A., Willcox, K.: Model reduction and approximation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017). https://doi.org/10.1137/1.9781611974829

  18. Benner, P., Mehrmann, V., Sorensen, D.C.: Dimension reduction of large-scale systems. Springer, Berlin, Germany (2005). https://doi.org/10.1007/3-540-27909-1

  19. Wilson, D.A.: Optimum solution of model-reduction problem. Proc. Inst. Electr. Eng. 117(6), 1161–1165 (1970). https://doi.org/10.1049/piee.1970.0227

    Article  Google Scholar 

  20. Van Dooren, P., Gallivan, K.A., Absil, P.-A.: \(\cal{H} _2\)-optimal model reduction of MIMO systems. App. Math. Lett. 21(12), 1267–1273 (2008). https://doi.org/10.1016/j.aml.2007.09.015

    Article  Google Scholar 

  21. Van Dooren, P., Gallivan, K.A., Absil, P.-A.: \(\cal{H} _2\)-optimal model reduction with higher-order poles. SIAM J. Matrix Anal. Appl. 31(5), 2738–2753 (2010). https://doi.org/10.1137/080731591

    Article  MathSciNet  Google Scholar 

  22. Bunse-Gerstner, A., Kubalinska, D., Vossen, G., Wilczek, D.: \(h_2\)-norm optimal model reduction for large scale discrete dynamical MIMO systems. J. Comput. Appl. Math. 233(5), 1202–1216 (2010). https://doi.org/10.1016/j.cam.2008.12.029

    Article  MathSciNet  Google Scholar 

  23. Anić, B., Beattie, C., Gugercin, S., Antoulas, A.C.: Interpolatory weighted-\(\cal{H} _2\) model reduction. Autom. 49(5), 1275–1280 (2013). https://doi.org/10.1016/j.automatica.2013.01.040

    Article  Google Scholar 

  24. Breiten, T., Beattie, C., Gugercin, S.: Near-optimal frequency-weighted interpolatory model reduction. Syst. Control Lett. 78, 8–18 (2015). https://doi.org/10.1016/j.sysconle.2015.01.005

    Article  MathSciNet  Google Scholar 

  25. Petersson, D., Löfberg, J.: Model reduction using a frequency-limited \(\cal{H} _2\)-cost. Syst. Control Lett. 67, 32–39 (2014). https://doi.org/10.1016/j.sysconle.2014.02.004

    Article  Google Scholar 

  26. Gugercin, S., Polyuga, R.V., Beattie, C.A., van der Schaft, A.J.: Interpolation-based \(\cal{H} _2\) model reduction for port-Hamiltonian systems. In: Proceedings of the 48h IEEE Conference on Decision and Control, pp. 5362–5369. (2009). https://doi.org/10.1109/CDC.2009.5400626

  27. Baur, U., Beattie, C.A., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33(5), 2489–2518 (2011). https://doi.org/10.1137/090776925

    Article  MathSciNet  Google Scholar 

  28. Beattie, C.A., Gugercin, S.: Realization-independent \(\cal{H}_2\)-approximation. In: Proceedings of the 51st IEEE Conference on Decision and Control (2012). https://doi.org/10.1109/CDC.2012.6426344

  29. Magruder, C., Beattie, C., Gugercin, S.: Rational Krylov methods for optimal \(\cal{L}_2\) model reduction. In: 49th IEEE Conference on Decision and Control (CDC), pp. 6797–6802 (2010). https://doi.org/10.1109/CDC.2010.5717454

  30. Sinani, K., Gugercin, S.: \(\cal{H} _2(t_f)\) optimality conditions for a finite-time horizon. Autom. 110, 108604 (2019). https://doi.org/10.1016/j.automatica.2019.108604

    Article  Google Scholar 

  31. Kubalinska, D.: Optimal interpolation-based model reduction. Ph.D. Thesis, Universitaet Bremen, Bremen, Germany (2008)

  32. Mlinarić, P., Gugercin, S.: \(\cal{L}_2\)-optimal reduced-order modeling using parameter-separable forms (2022). arXiv:2206.02929

  33. Mlinarić, P., Gugercin, S.: A unifying framework for interpolatory \(\cal{L}_2\)-optimal reduced-order modeling (2023). arXiv:2209.00714

  34. De Villemagne, C., Skelton, R.E.: Model reductions using a projection formulation. In: 26th IEEE Conference on Decision and Control vol. 26, pp. 461–466. IEEE, Los Angeles, CA, USA (1987). https://doi.org/10.1109/CDC.1987.272862

  35. Wegert, E.: Visual complex functions. Springer, Basel, Switzerland (2012). https://doi.org/10.1007/978-3-0348-0180-5

  36. Freitag, E., Busam, R.: Complex analysis. Springer, Berlin Heidelberg (2009). https://doi.org/10.1007/978-3-540-93983-2

  37. Kythe, P.K.: Handbook of conformal mappings and applications. Chapman and Hall/CRC, New York (2019). https://doi.org/10.1201/9781315180236

  38. Beliaev, D.: Conformal maps and geometry. World Scientific (Europe), London (2019). https://doi.org/10.1142/q0183

  39. Duren, P.L.: Theory of H\(^{\text{p}}\) spaces. Academic Press, New York and London (1970). https://doi.org/10.1016/S0079-8169(08)62674-4

  40. Bradley, R.E., Petrilli, S.J., Sandifer, C.E.: L’Hôpital’s Analyse des Infiniments Petits. Birkhäuser, Cham, Switzerland (2015). https://doi.org/10.1007/978-3-319-17115-9

  41. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory methods for model reduction. Society for Industrial and Applied Mathematics, Philadelphia, PA (2020). https://doi.org/10.1137/1.9781611976083

  42. Trefethen, L.N.: Approximation theory and approximation practice. Society for Industrial and Applied Mathematics, Philadelphia, PA (2019). https://doi.org/10.1137/1.9781611975949

  43. Tucsnak, M., Weiss, G.: Observation and control for operator semigroups. Birkhäuser Basel, Basel (2009). https://doi.org/10.1007/978-3-7643-8994-9

Download references

Acknowledgements

We would like to thank Olivier Sète, Jan Zur, and Mathias Oster for their insightful and helpful discussions.

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 384950143 as part of GRK2433 DAEDALUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Borghi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghi, A., Breiten, T. \(\mathcal {H}_2\) optimal rational approximation on general domains. Adv Comput Math 50, 28 (2024). https://doi.org/10.1007/s10444-024-10125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-024-10125-8

Keywords

Mathematics Subject Classification (2010)

Navigation