Skip to main content
Log in

Effect of Mean Specific Gravity on Combustion Characteristics of Selected High Ash Indian Coal

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The present research shows the combustion characteristics of different specific gravity fractions of high ash thermal coal. Coal with different mean specific gravity (SGM) ranging from 1.25 to 2.0 was produced using the float–sink experiment. All SGM coals were characterized with proximate analysis, ultimate analysis, higher heating value, ash analysis, Brunauer–Emmett–Teller analysis and Fourier-transform infrared spectroscopy (FTIR). Combustion experiments were performed with thermogravimetric analysis to identify the impact of SGM. Experimental results inferred that ignition temperature ranged from 285 to 408 °C as SGM varied from 1.25 to 2.0. The combustion rate of 1.25 SGM coal was found to be the highest due to the strong or moderate presence of hydrocarbons like alkane, alkene, aldehyde and alcoholic, as observed from FTIR. Activation energy ranged from 121.81 to 54.60 kJ/ mol as SGM of coal increased from 1.25 to 2.0. Thermodynamic analysis inferred that 1.65 SGM coal had the highest ΔS (− 158.21 J/mol. K) and minimum ΔH (48.93 kJ/ mol), inferring ease of decomposition and higher combustion reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

All the data generated or analyzed during this study are included in this article.

References

  • Aich, S., Nandi, B. K., & Bhattacharya, S. (2019). Utilization of Sal leaves and Sal leaves char to improve the combustion performance of reject coal. Energy Sources, Part A Recovery, Utilization and Environmental Effect, 41(19), 2299–2312.

    Article  CAS  Google Scholar 

  • Aprianti, N., Faizal, M., Said, M., Nasir, S., & Fudholi, A. (2023). Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis. Energy, 268, 126666.

    Article  CAS  Google Scholar 

  • Banerjee, A., Mishra, P. R., Mohanty, A., Chakravarty, K., Biswas, R. D., Sahu, R., & Chakravarty, S. (2016). Distribution of mineral species in different coal seams of Talcher coalfield and its transformation behaviour at varying temperatures. International Journal of Coal Science and Technology, 3, 97–103.

    Article  CAS  Google Scholar 

  • Biswas, S., Choudhury, N., Sarkar, P., Mukherjee, A., Sahu, S. G., Boral, P., & Choudhury, A. (2006). Studies on the combustion behaviour of blends of Indian coals by TGA and drop tube furnace. Fuel Processing Technology, 87, 191–199.

    Article  CAS  Google Scholar 

  • Cai, J., Yang, S., Zheng, W., & Song, W. (2021). Risk assessment of oxidizability of coal after dynamic hazard and its effect on functional groups and radicals. Natural Resources Research, 30(6), 4533–4545.

    Article  Google Scholar 

  • Cao, W., Cao, W., Peng, Y., Qiu, S., Miao, N., & Pan., F. (2015). Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust. Powder Technology, 283, 512–518.

    Article  CAS  Google Scholar 

  • Chakraborty, P., Hazra, B., Sarkar, P., Singh, A. K., Singh, P. K., & Kumar, S. (2021). Thermal behavior of some Indian coals: Inferences from simultaneous thermogravimetric-calorimetry and rock-eval. Natural Resources Research, 30(3), 2161–2177.

    Article  CAS  Google Scholar 

  • Chakravarty, S., Chakravarty, K., Mishra, V., Chakladar, S., Mohanty, A., & Sharma, M. (2020). Characterization of chemical structure with relative density of three different ranks of coal from India. Natural Resource Research, 29(5), 3121–3136.

    Article  CAS  Google Scholar 

  • Dhyani, V., Kumar, J., & Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245, 1122–1129.

    Article  CAS  PubMed  Google Scholar 

  • Fang, X., Cai, Y., Hu, Q., Liu, Q., Gao, P., Qian, Y., & Jia, Q. (2022). Hydrocarbon retention and its effect on pore structure evolution of marine shale based on pyrolysis simulation experiments. Energy and Fuels, 36, 13556–13569.

    Article  CAS  Google Scholar 

  • Fortish, D., Essenhigh, R. H., Froberg, R. W., Schnell, U., & Hein, K. R. G. (2000). Influence of the density profile on the combustion characteristics of carbon: A theoretical study. Proceedings of the Combustion Institute, 28, 2251–2260.

    Article  Google Scholar 

  • García, R., Pizarro, C., Álvarez, A., Lavín, A. G., & Bueno, J. L. (2015). Study of biomass combustion biomass combustion wastes. Fuel, 148, 152–159.

    Article  Google Scholar 

  • Gupta, O. P. (2000). Elements of fuels, furnaces and refractories (5th ed.). Khanna publishers.

    Google Scholar 

  • Gupta, R. (2007). Advanced coal characterization: A review. Energy and Fuels, 21, 451–460.

    Article  CAS  Google Scholar 

  • Kumar, P., & Nandi, B. K. (2021). Combustion characteristics of high ash Indian coal, wheat straw, wheat husk and their blends. Material Science for Energy Technologies, 4, 274–281.

    Article  Google Scholar 

  • Kumar, P., & Nandi, B. K. (2022). Effect of rice husk blending on combustion characteristics of high ash Indian coal analyzed in TGA. International Journal of Coal Preparation and Utilization, 42(12), 3698–3711.

    Article  CAS  Google Scholar 

  • Kumari, S., Gouricharan, T., Pandey, J. K., Udayabhanu, G., & Sharma, S. N. (2016). Evaluation of quartz reduction by coal cleaning for thermal utilization of an Indian coal. International Journal of Coal Preparation and Utilization, 38, 53–63.

    Article  Google Scholar 

  • Liu, Z., Liu, S., Shi, R., Wang, J., Xie, M., & Zheng, S. (2020). A control strategy of the air flow rate of coal-fired utility boilers based on the load demand. ACS Omega, 5, 31199–31208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, B., Luo, Z., Fu, Y., Zhang, B., Qin, X., & Zhu, X. (2020). Particle mixing behavior of fine coal in density control of gas–solid separation fluidized bed. Particuology, 50, 76–87.

    Article  Google Scholar 

  • Merdun, H., & Laouge, Z. B. (2021). Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA. Renewable Energy, 163, 453–464.

    Article  CAS  Google Scholar 

  • Mishra, D. P. (2022). Effects of intrinsic properties, particle size and specific surface area on WOP and spontaneous combustion susceptibility of coal. Advanced Powder Technology, 33, 103454.

    Article  CAS  Google Scholar 

  • Mishra, R. K., & Mohnaty, K. (2020). Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology, 311, 123480.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, V., Sharma, M., Chakravarty, S., & Banerjee, A. (2016a). Changes in organic structure and mineral phases transformation of coal during heat treatment on laboratory scale. International Journal of Coal Science and Technology, 3(4), 418–428.

    Article  CAS  Google Scholar 

  • Mishra, V., Bhowmick, T., Chakravarty, S., Varma, A. K., & Sharma, M. (2016b). Influence of coal quality on combustion beahviour and mineral phases transformations. Fuel, 186, 443–455.

    Article  CAS  Google Scholar 

  • Nag, P. K. (2014). Power plant engineering (4th ed.). New Delhi: McGraw Hill Education Private Limited.

    Google Scholar 

  • Nyoni, B., Duma, S., Shabangu, S. V., & Hlangothi, S. P. (2020). Comparison of the slow pyrolysis behavior and kinetics of coal, wood and algae at high heating rates. Natural Resources Research, 29(6), 3943–3955.

    Article  CAS  Google Scholar 

  • Odeh, A. O. (2015). Qualitative and quantitative ATR-FTIR analysis and its application on coal char to of different ranks. Journal of Fuel Chemistry and Technology, 43, 129–137.

    Article  CAS  Google Scholar 

  • Raghuvanshi, G., Chakraborty, P., Hazra, B., Adak, A. K., Singh, P. K., Singh, A. K., & Singh, V. (2022). Pyrolysis and combustion behavior of few high-ash Indian coals. International Journal of Coal Preparation and Utilization, 42(8), 2452–2472.

    Article  CAS  Google Scholar 

  • Ronsse, F., Hecke, S. V., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Global Change Biology: Bioenergy, 5, 104–115.

    Article  CAS  Google Scholar 

  • Saini, M. K., & Srivastava, P. K. (2017). Effect of coal cleaning on ash composition and its fusion characteristics for a high-ash non-coking coal of India. International Journal of Coal Preparation and Utilization, 37(1), 1–11.

    Article  CAS  Google Scholar 

  • Sampath, K. H. S. M., Sin, I., Perera, M. S. A., Matthai, S. K., Ranjith, P. G., & Dong-yin, L. (2020). Effect of supercritical-CO2 interaction time on the alterations in coal pore structure. Journal of Natural Gas Science and Engineering, 76, 103214.

    Article  CAS  Google Scholar 

  • Sarkar, P., Mukherjee, A., Sahu, S. G., Choudhury, A., Adak, A. K., Kumar, M., Choudhury, N., & Biswas, S. (2013). Evaluation of combustion characteristics in thermogravimetric analyzer and drop tube furnace for Indian coal blends. Applied Thermal Engineering, 60, 145–151.

    Article  CAS  Google Scholar 

  • Shen, J., Liu, J., Xing, Y., Zhang, H., Luo, L., & Jiang, X. (2018). Application of TG-FTIR analysis to superfine pulverized coal. Journal of Analytical and Applied Pyrolysis, 133, 154–161.

    Article  CAS  Google Scholar 

  • Song, H., Liu, G., Zhang, J., & Wu, J. (2017). Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Processing Technology, 156, 454–460.

    Article  CAS  Google Scholar 

  • Sun, K., Kang, M., Zhang, Z., Jin, J., Wang, Z., Pan, Z., Xu, D., Wu, F., & Xing, B. (2013). Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science and Technology, 47, 11473–11481.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tiwari, R., Bhattacharya, S., & Raghav, P. (2015). A discussion on non-coking coal pricing systems adopted in different countries. Vikalpa: The Journal for decision Makers, 40(1), 62–73.

    Article  Google Scholar 

  • Wang, G., Zhang, J., Shao, J., Liu, Z., Zhang, G., Xu, T., Guo, J., Wang, H., Xu, R., & Lin, H. (2016). Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Conversion and Management, 124, 414–426.

    Article  CAS  Google Scholar 

  • Wang, P., Wang, G., Zhang, J., Lee, J. Y., Li, Y., & Wang, C. (2018). Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char. Applied Thermal Engineering, 143, 736–745.

    Article  CAS  Google Scholar 

  • Wang, H., Li, J., Fan, C., Wang, L., & Chen, X. (2022). Thermal kinetics of coal spontaneous combustion based on multiphase fully coupled fluid-mechanical porous media model. Natural Resources Research, 31(5), 2819–2837.

    Article  CAS  Google Scholar 

  • Wu, D., Zhou, P., Yan, H., Shi, P., & Zhou, C. Q. (2019). Numerical investigation of the effects of size segregation on pulverized coal combustion in a blast furnace. Powder Technology, 342, 41–53.

    Article  CAS  Google Scholar 

  • Xinjie, L., Singh, S., Yang, H., Wu, C., & Zhang, S. (2021). A thermogravimetric assessment of the tri-combustion process for coal, biomass and polyethylene. Fuel, 287, 119355.

    Article  Google Scholar 

  • Xuguang, S. (2005). The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy. Spectrochim Acta A, 62, 557–564.

    Article  ADS  Google Scholar 

  • Yu, Z., Zhang, X., Wen, Y., Haihui, X., Sherong, H., & Yu, S. (2020). Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal analysis. Scientific Reports, 10, 7125.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhang, W., Jiang, S., Wang, K., Wang, L., Xu, Y., Wu, Z., & Shao, H. (2015). Thermo gravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures. International Journal of Coal Preparation and Utilization, 35, 39–50.

    Article  Google Scholar 

  • Zou, L., Yang, W., Zhao, Q., Ma, L., Ren, L., & Wang, Y. (2022). Research on self-ignition characteristics and prediction indices of pulverized low-rank coal under different oxygen concentrations. Natural Resources Research, 31(2), 897–911.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barun Kumar Nandi.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, D., Kumar, P. & Nandi, B.K. Effect of Mean Specific Gravity on Combustion Characteristics of Selected High Ash Indian Coal. Nat Resour Res 33, 727–741 (2024). https://doi.org/10.1007/s11053-023-10300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10300-6

Keywords

Navigation