Skip to main content
Log in

Molecular Insights on Competitive Adsorption of CH4, CO2 and Flue Gas in Shallow and Deep Coals for Gas Injection Technology

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Gas injection for enhancing gas recovery (GI–EGR) is a multifaceted process that requires a solid theoretical foundation to be implemented orderly. However, there are limited reports on the micro-mechanisms of GI–EGR technology applied to coalbed methane reservoirs, especially for deep strata. To address this gap, this study utilized molecular simulation techniques to construct the organic pore models of anthracite with varying sizes and morphologies, and explored the micro-dynamic behaviors of CH4 and various gas injected components including N2, CO2 and flue gas confined in nanopores. The aim was to reveal the competitive adsorption mechanisms of gases in multi-component systems under shallow and deep geological conditions. The results demonstrated that the isosteric heats of CH4, N2 and CO2 all increased after the transition from shallow to deep, with rising amplitudes of 18.8%, 22.8% and 17.8%, respectively, in the respective single-component systems. In multi-component adsorption models, the isosteric heats remained higher than those under shallow conditions, but there were some small fluctuations due to the interference between various gases. On the other hand, the self-diffusion coefficients of single CH4, N2 and CO2 in the deep condition decreased by 37.6%, 27.2% and 23.1%, respectively, compared to those in conventional shallow conditions. As a consequence, the difference in diffusivity among various gases would get narrowed. The molecular-level observations herein have the potential to improve the understanding of gas occurrence and lay a solid foundation for the GI–EGR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Bai, G., Su, J., Li, X. M., Guo, C. S., Han, M. X., Zhou, X. H., & Fan, C. J. (2022a). Step-by-step CO2 injection pressure for enhanced coal seam gas recovery: A laboratory study. Energy, 260, 125197.

    Article  CAS  Google Scholar 

  • Bai, G., Su, J., Zhang, Z. G., Lan, A. C., Zhou, X. H., Gao, F., & Zhou, J. B. (2022b). Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study. Energy, 238, 121674.

    Article  CAS  Google Scholar 

  • Bai, Y., Lin, H. F., Li, S. G., Yan, M., & Long, H. (2021). Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures. Energy, 219, 119686.

    Article  CAS  Google Scholar 

  • Bunte, S. W., & Sun, H. (2000). Molecular modeling of energetic materials: The parameterization and validation of nitrate esters in the COMPASS force field. The Journal of Physical Chemistry B, 104, 2477–2489.

    Article  CAS  Google Scholar 

  • Cao, Q. L., Tu, F., Xue, L., & Wang, F. H. (2019). Assessing relationships between self-diffusion coefficient and viscosity in Ni-Al alloys based on the pair distribution function. Journal of Applied Physics, 126, 105108.

    Article  Google Scholar 

  • Chen, J. J., Li, W. W., Li, X. L., & Yu, H. Q. (2012). Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: A molecular simulation investigation. Environmental Science and Technology, 46, 10341–10348.

    Article  CAS  Google Scholar 

  • Chen, K., Liu, X. F., Wang, L. K., Song, D. Z., Nie, B. S., & Yang, T. (2021). Influence of sequestered supercritical CO2 treatment on the pore size distribution of coal across the rank range. Fuel, 306, 121708.

    Article  CAS  Google Scholar 

  • Dai, X., Bai, J., Yuan, P., Du, S. Y., Li, D. T., Wen, X. D., & Li, W. (2020). The application of molecular simulation in ash chemistry of coal. Chinese Journal of Chemical Engineering, 28, 2723–2732.

    Article  CAS  Google Scholar 

  • Dee, G. T., & Sauer, B. B. (2017). The cohesive energy density of polymers and its relationship to surface tension, bulk thermodynamic properties, and chain structure. Journal of Applied Polymer Science, 134, 44431.

    Article  Google Scholar 

  • Gambelli, A. M., Presciutti, A., & Rossi, F. (2021). Review on the characteristics and advantages related to the use of flue-gas as CO2/N2 mixture for gas hydrate production. Fluid Phase Equilibria, 541, 113077.

    Article  CAS  Google Scholar 

  • Jeong, S. R., Park, J. H., Lee, J. H., Jeon, P. R., & Lee, C. H. (2023). Review of the adsorption equilibria of CO2, CH4, and their mixture on coals and shales at high pressures for enhanced CH4 recovery and CO2 sequestration. Fluid Phase Equilibria, 564, 113591.

    Article  CAS  Google Scholar 

  • Lan, W. J., Wang, H. X., Liu, Q. H., Zhang, X., Chen, J. K., Li, Z. L., Fang, K., & Chen, S. S. (2021). Investigation on the microwave heating technology for coalbed methane recovery. Energy, 237, 121450.

    Article  CAS  Google Scholar 

  • Li, J. (2023). Quantum physisorption of gas in nanoporous media: A new perspective. Processes, 11, 758.

    Article  CAS  Google Scholar 

  • Li, S., Qin, Y., Tang, D. Z., Shen, J., Wang, J. J., & Chen, S. D. (2023). A comprehensive review of deep coalbed methane and recent developments in China. International Journal of Coal Geology, 279, 104369.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, Y. B., Wang, J., & Pan, Z. J. (2020). Variation in permeability during CO2–CH4 displacement in coal seams: Part 1—Experimental insights. Fuel, 263, 116666.

    Article  CAS  Google Scholar 

  • Liu, X. L., Wu, C. F., Wei, G. Y., Zhang, X. D., Jia, T. R., Li, H. Z., & Du, M. Y. (2020). Adsorption deformation characteristics of coal and coupling with permeability during gas injection. Journal of Petroleum Science and Engineering, 195, 107875.

    Article  CAS  Google Scholar 

  • Long, H., Lin, H. F., Yan, M., Chang, P., Li, S. G., & Bai, Y. (2021). Molecular simulation of the competitive adsorption characteristics of CH4, CO2, N2, and multicomponent gases in coal. Powder Technology, 385, 348–356.

    Article  CAS  Google Scholar 

  • Mathews, J. P., & Chaffee, A. L. (2012). The molecular representations of coal—A review. Fuel, 96, 1–14.

    Article  CAS  Google Scholar 

  • Mu, Y. L., Fan, Y. P., Wang, J. R., & Fan, N. (2019). Numerical study on injection of flue gas as a heat carrier into coal reservoir to enhance CBM recovery. Journal of Natural Gas Science and Engineering, 72, 103017.

    Article  CAS  Google Scholar 

  • Nishioka, M. (1992). The associated molecular nature of bituminous coal. Fuel, 71, 941–948.

    Article  CAS  Google Scholar 

  • Pathak, M., Huang, H., Meakin, P., & Deo, M. (2018). Molecular investigation of the interactions of carbon dioxide and methane with kerogen: Application in enhanced shale gas recovery. Journal of Natural Gas Science and Engineering, 51, 1–8.

    Article  CAS  Google Scholar 

  • Qin, C., Jiang, Y. D., Zhou, J. P., Song, X., Liu, Z. J., Li, D., Zhou, F., Xie, Y. L., & Xie, C. L. (2021). Effect of supercritical CO2 extraction on CO2/CH4 competitive adsorption in Yanchang shale. Chemical Engineering Journal, 412, 128701.

    Article  CAS  Google Scholar 

  • Qin, Y., & Shen, J. (2016). On the fundamental issues of deep coalbed methane geology. Acta Petrolei Sinica, 37, 125–136.

    Google Scholar 

  • Reucroft, P. J., & Patel, H. (1986). Gas-induced swelling in coal. Fuel, 65, 816–820.

    Article  CAS  Google Scholar 

  • Rivera, L. (2019). Infinite acting aquifer (IAA)—Implications for coalbed methane production at the Syncline of Umbita, Colombia. International Journal of Coal Geology, 209, 54–71.

    Article  CAS  Google Scholar 

  • Shahtalebi, A., Khan, C., Dmyterko, A., Shukla, P., & Rudolph, V. (2016). Investigation of thermal stimulation of coal seam gas fields for accelerated gas recovery. Fuel, 180, 301–313.

    Article  CAS  Google Scholar 

  • Sun, H. (1988). COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102, 7338–7364.

    Article  Google Scholar 

  • Sun, H., Zhao, H., Qi, N., & Li, Y. (2017). Molecular insights into the enhanced shale gas recovery by carbon dioxide in kerogen slit nanopores. Journal of Physical Chemistry C, 121, 10233–10241.

    Article  CAS  Google Scholar 

  • Wang, J., Hou, Q. L., Zeng, F. G., & Guo, G. J. (2021). Gas generation mechanisms of bituminous coal under shear stress based on ReaxFF molecular dynamics simulation. Fuel, 298, 120240.

    Article  CAS  Google Scholar 

  • Wei, X. R., Massarotto, P., Wang, G., Rudolph, V., & Golding, S. D. (2010). CO2 sequestration in coals and enhanced coalbed methane recovery: New numerical approach. Fuel, 89, 1110–1118.

    Article  CAS  Google Scholar 

  • Wu, S. Y., Deng, C. B., & Wang, X. F. (2019). Molecular simulation of flue gas and CH4 competitive adsorption in dry and wet coal. Journal of Natural Gas Science and Engineering, 71, 102980.

    Article  CAS  Google Scholar 

  • Xia, Y. C., Zhang, R., Cao, Y. J., Xing, Y. W., & Gui, X. H. (2020). Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review. Fuel, 262, 116535.

    Article  CAS  Google Scholar 

  • Xiang, J. H., Zeng, F. G., Li, B., Zhang, L., Li, M. F., & Liang, H. Z. (2013). Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation. Journal of Fuel Chemistry and Technology, 41, 391–400.

    Article  CAS  Google Scholar 

  • Yang, H., Li, G. C., Dong, X. H., Deng, T., Li, J., Qin, X. H., Wang, W., Zhang, Y. M., & Zhou, L. (2022). Application of coalbed methane hydraulic jet-increasing permeability-nitrogen injection to increase production in Shanxi mining area. Journal of Petroleum Science and Engineering, 215, 110611.

    Article  CAS  Google Scholar 

  • Yang, H. W., Xu, J., Peng, S. J., Nie, W., Geng, J. B., & Zhang, C. L. (2016). Large-scale physical modelling of carbon dioxide injection and gas flow in coal matrix. Powder Technology, 294, 449–453.

    Article  CAS  Google Scholar 

  • Yang, J. Z., Liu, Q. L., & Wang, H. T. (2007). Analyzing adsorption and diffusion behaviors of ethanol/water through silicalite membranes by molecular simulation. Journal of Membrane Science, 291, 1–9.

    Article  CAS  Google Scholar 

  • Yang, J. H., Okwananke, A., Tohidi, B., Chuvilin, E., Maerle, K., Istomin, V., Bukhanov, B., & Cheremisin, A. (2017). Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration. Energy Conversion and Management, 136, 431–438.

    Article  CAS  Google Scholar 

  • Yang, Y. H., Pan, J. N., Hou, Q. L., Wang, K., & Wang, X. L. (2021). Stress degradation mechanism of coal macromolecular structure: Insights from molecular dynamics simulation and quantum chemistry calculations. Fuel, 303, 121258.

    Article  CAS  Google Scholar 

  • Yin, G. Z., Deng, B. Z., Li, M. H., Zhang, D. M., Wang, W. Z., Li, W. P., & Shang, D. L. (2017). Impact of injection pressure on CO2–enhanced coalbed methane recovery considering mass transfer between coal fracture and matrix. Fuel, 196, 288–297.

    Article  CAS  Google Scholar 

  • Yin, T. T., Liu, D. M., Cai, Y. D., & Marte, G. (2022). Gas transport and diffusion coefficients in a coupling coal system of matrix and nano-fracture: A molecular simulation study. Journal of Natural Gas Science and Engineering, 99, 104407.

    Article  CAS  Google Scholar 

  • Yu, Y. B., Xing, H., Cheng, W. M., Cui, W. T., & Mu, R. Y. (2022). Experimental and molecular dynamics simulation of organic structure of bituminous coal in response to acetic acid. Journal of Industrial and Engineering Chemistry, 111, 289–299.

    Article  CAS  Google Scholar 

  • Yuan, M. Y., Nie, W., Yu, H., Yan, J. Y., Bao, Q., Zhou, W. W., Hua, Y., Guo, L. D., & Niu, W. J. (2021). Experimental and molecular dynamics simulation study of the effect of different surfactants on the wettability of low-rank coal. Journal of Environmental Chemical Engineering, 9, 105986.

    Article  CAS  Google Scholar 

  • Zhai, Z. Q., Wang, X. Q., Jin, X., Sun, L., Li, J. M., & Cao, D. P. (2014). Adsorption and diffusion of shale gas reservoirs in modeled clay minerals at different geological depths. Energy & Fuels, 28, 7467–7473.

    Article  CAS  Google Scholar 

  • Zhang, D. F., Wang, H. H., Wang, Q. Q., Li, W., Jiang, W. P., Huo, P. L., Zhang, J., Zhu, L., Duan, G. Q., & Du, C. C. (2016). Interactions of nitric oxide with various rank coals: Implications for oxy-coal combustion flue gas sequestration in deep coal seams with enhanced coalbed methane recovery. Fuel, 182, 704–712.

    Article  CAS  Google Scholar 

  • Zhang, X. D., Zhang, S., Du, Z. G., Wang, G. G. X., Heng, S., Liu, X., & Lin, J. F. (2021). CO2 and N2 adsorption/desorption effects and thermodynamic characteristics in confined coal. Journal of Petroleum Science and Engineering, 207, 109166.

    Article  CAS  Google Scholar 

  • Zhang, Y. Y., Gao, S. Y., Du, X. Y., Chen, M., & Jin, Y. (2019). Molecular dynamics simulation of strength weakening mechanism of deep shale. Journal of Petroleum Science and Engineering, 181, 106123.

    Article  CAS  Google Scholar 

  • Zhou, J., Jin, Z., & Luo, K. H. (2020). Insights into recovery of multi-component shale gas by CO2 injection: A molecular perspective. Fuel, 267, 117247.

    Article  CAS  Google Scholar 

  • Zhou, L. J., Zhou, X. H., Fan, C. J., & Bai, G. (2022). Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery. Energy, 252, 124065.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Natural Science Foundation of Shandong Province, China (Nos. ZR2022QD012 and ZR2021QD072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yidong Cai or Junjian Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, T., Li, Q., Liu, D. et al. Molecular Insights on Competitive Adsorption of CH4, CO2 and Flue Gas in Shallow and Deep Coals for Gas Injection Technology. Nat Resour Res 33, 1155–1171 (2024). https://doi.org/10.1007/s11053-024-10323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-024-10323-7

Keywords

Navigation