Skip to main content
Log in

Pore–Fracture Structure Characteristics of Low-Medium Rank Coals from Eastern Surat Basin by FE-SEM and NMR Experiments

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The Middle Jurassic Walloon Subgroup coals in Australia’s Surat Basin are extremely rich in low-medium rank coal seam gas (CSG) resources, making it one of the world’s most productive CSG development basins. The desorption, diffusion and seepage behaviors of CSG are remarkably influenced by the pore–fracture structure characteristics of coals; therefore, their detailed characterizations are greatly significant for CSG exploration and development. There are, however, currently few researches on the pore–fracture structure characteristics of Surat Basin coals. Thus, 12 low-medium rank coals (\({\overline{\text{R}}}\)r: 0.42–0.60%) from the Walloon subgroup of Eastern Surat Basin were obtained for this study, and then coal petrology analyses, field emission scanning electron microscopy and nuclear magnetic resonance (NMR) experiments were performed on these samples. The results show that the organic macerals of Surat coals are dominated by vitrinite, followed by liptinite, and the inertinite is generally rare. The average porosity, movable porosity and movable water saturation of the coal samples were 5.08%, 1.01% and 22.47%, respectively. The coal samples’ pore–fracture structure was characterized by an overwhelming predominance of MIT (micropores and transition pore) and relatively less developed ME (mesopore) and MAF (macropore and fracture), with average volume proportions of 74.58%, 14.06% and 11.36%, respectively. The movable porosities of different pore–fracture structure types were obtained, and the average values were presented as MAF > ME > MIT. The NMR experiments showed that the average movable spaces in the MIT, ME and MAF of the coal samples were 6.6%, 41.8% and 97.9%, respectively. The pore–fracture structure of the sampled coals was influenced by coal maturity, as well as the coal macerals. The coal facies have some impacts on the porosities of coal samples, and the coals with higher texture preservation index and vegetation index, and lower gelation index overall have higher porosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6.
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  • Andrade, C., Sobczak, K., Vasconcelos, P., Holl, H. G., Hurter, S., & Allen, C. M. (2023). U-Pb detrital zircon geochronology of the Middle to Upper Jurassic strata in the Surat Basin: New insights into provenance, paleogeography, and source-sink processes in eastern Australia. Marine and Petroleum Geology, 149, 106122.

    Article  CAS  Google Scholar 

  • Ayers Jr, W. B. (2002). Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins. AAPG Bulletin, 86, 1853–1890.

    CAS  Google Scholar 

  • Calder, J. H., Gibling, M. R., & Mukhopadhyay, P. K. (1991). Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implications for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Société Géologique de France, 162(2), 283–298.

    CAS  Google Scholar 

  • Chen, Y., Tang, D. Z., Xu, H., Tao, S., Li, S., Yang, G. H., & Yu, J. J. (2015). Pore and fracture characteristics of different rank coals in the eastern margin of the Ordos Basin, China. Journal of Natural Gas Science and Engineering, 26, 1264–1277.

    Article  CAS  Google Scholar 

  • Cheng, Y. P., & Hu, B. (2023). A new pore classification method based on the methane occurrence and migration characteristics in coal. Journal of China Coal Society, 48(1), 212–225. in Chinese.

    Google Scholar 

  • Coates, G. R., Xiao, L. Z., & Prammer, M. G. (1999). NMR logging principles and applications. Gulf Publishing Company.

    Google Scholar 

  • Cui, Z. H., Su, P. H., Liu, L. L., Li, M., & Wang, J. J. (2022). Quantitative characterization, exploration zone classification and favorable area selection of low-rank coal seam gas in Surat block in Surat Basin, Australia. China Petroleum Exploration, 27, 108–118. in Chinese.

    Google Scholar 

  • Dai, S. F., Ren, D. Y., Li, S. S., Zhao, L., & Zhang, Y. (2007). Coal facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Science in China Series D-Earth Sciences, 50, 144–152.

    Article  ADS  CAS  Google Scholar 

  • Diessel, C. F. K. (1982). An appraisal of coal facies based on maceral characteristics. Australian Coal Geology, 4(2), 474–484.

    Google Scholar 

  • DNRM. (2016). Queensland’s Petroleum and coal seam gas. In: Mines. CC15-GSQ104 Department of Natural Resources and Mines, Brisbane.

  • Fu, G., Zhang, Y., & Zou, D. (1997). The measurement and analysis of the balanced contact angle between coal and pure water. Coal Conversion, 20(4), 60–62. in Chinese.

    CAS  Google Scholar 

  • Fu, H. J., Tang, D. Z., Xu, H., Tao, S., Xu, T., Chen, B. L., & Yin, Z. Y. (2016). Abrupt changes in reservoir properties of low-rank coal and its control factors for methane adsorbability. Energy and Fuels, 30, 2084–2094.

    Article  CAS  Google Scholar 

  • Guo, H. J., Yuan, L., Cheng, Y. P., Wang, K., & Xu, C. (2019). Experimental investigation on coal pore and fracture characteristics based on fractal theory. Powder Technology, 346, 341–349.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., Esterle, J. S., & Sliwa, R. (2014a). Stratigraphic and depositional framework of the Walloon Subgroup, eastern Surat Basin, Queensland. Australian Journal of Earth Sciences, 61, 1061–1080.

    Article  ADS  CAS  Google Scholar 

  • Hamilton, S. K., Golding, S. D., Baublys, K. A., & Esterle, J. S. (2014b). Stable isotopic and molecular composition of desorbed coal seam gases from the Walloon Subgroup, eastern Surat Basin, Australia. International Journal of Coal Geology, 122, 21–36.

    Article  CAS  Google Scholar 

  • Hamilton, S. K., Golding, S. D., Baublys, K. A., & Esterle, J. S. (2015). Conceptual exploration targeting for microbially enhanced coal bed methane (MECoM) in the Walloon Subgroup, eastern Surat Basin, Australia. International Journal of Coal Geology, 138, 68–82.

    Article  CAS  Google Scholar 

  • Han, L., Shen, J., Wang, J. Y., & Shabbiri, K. (2021). Characteristics of pore evolution and its maceral contributions in the Huolinhe lignite during coal pyrolysis. Natural Resources Research, 30, 2195–2210.

    Article  CAS  Google Scholar 

  • Hodot, B. B. (1966). Outburst of coal and coalbed gas. China Industry Press. Chinese translation.

    Google Scholar 

  • Hou, S. H., Wang, X. M., Wang, X. J., Yuan, Y. D., Pan, S. D., & Wang, X. M. (2017). Pore structure characterization of low volatile bituminous coals with different particle size and tectonic deformation using low pressure gas adsorption. International Journal of Coal Geology, 183, 1–13.

    Article  CAS  Google Scholar 

  • Howard, J. J., Kenyon, W. E., & Straley, C. (1993). Proton-magnetic resonance and pore-size variations in reservoir sandstones. SPE Formation Evaluation, 8, 194–200.

    Article  CAS  Google Scholar 

  • ISO 11760-2005(E). (2005). Classification of coals.

  • ISO 7404.3-1994. (1994). Methods for the petrographic analysis of bituminous coal and anthracite—Part 3: Method of determining maceral group composition.

  • ISO 7404.5-1994. (1994). Method for the petrographic analysis of bituminous coal and anthracite—Part 5: Method of determining microscopically the reflectance of vitrinite.

  • Jiu, B., Huang, W. H., & Hao, R. L. (2021). A method for judging depositional environment of coal reservoir based on coal facies parameters and rare earth element parameters. Journal of Petroleum Science and Engineering, 207, 109128.

    Article  Google Scholar 

  • Kenyon, W. E., Day, P. I., Straley, C., & Willemsen, J. F. (1988). A three part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation, 3, 622–636.

    Article  CAS  Google Scholar 

  • Laubach, S. E., Marrett, R. A., Olson, J. E., & Scott, A. R. (1998). Characteristics and origins of coal cleat: A review. International Journal of Coal Geology, 35, 175–207.

    Article  CAS  Google Scholar 

  • Li, Y., Yang, J. H., Pan, Z. J., & Tong, W. S. (2020). Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images. Fuel, 260, 116352.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, C., Tang, D. Z., Gan, Q., Niu, X. L., Wang, K., & Shen, R. Y. (2017a). Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel, 206, 352–363.

    Article  CAS  Google Scholar 

  • Li, Y. J., Zhai, C., Xu, J. Z., Yu, X., Sun, Y., Cong, Y. Z., Tang, W., & Zheng, Y. F. (2023). Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery. Energy, 270, 126866.

    Article  CAS  Google Scholar 

  • Li, Z. T., Liu, D. M., Cai, Y. D., Ranjith, P. G., & Yao, Y. B. (2017b). Multi-scale quantitative characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT. Fuel, 209, 43–53.

    Article  CAS  Google Scholar 

  • Liu, P., Nie, B. S., Zhao, Z. D., Zhao, Y. L., & Li, Q. G. (2023). Characterization of ultrasonic induced damage on multi-scale pore/fracture in coal using gas sorption and μ-CT 3D reconstruction. Fuel, 332, 126–178.

    Article  Google Scholar 

  • Liu, S. Q., Wang, H., Wang, R., Gao, D. Y., & Tripathy, A. (2021). Research advances on characteristics of pores and fractures in coal seams. Acta Sedimentologica Sinica, 39, 212–230.

    ADS  Google Scholar 

  • Luo, Y. F., Xia, B. W., Li, H. L., Hu, H. R., Wu, M. Y., & Ji, K. N. (2021). Fractal permeability model for dual-porosity media embedded with natural tortuous fractures. Fuel, 295, 120610.

    Article  CAS  Google Scholar 

  • Martin, M. A., Wakefield, M., MacPhail, M. K., Pearce, T., & Edwards, H. E. (2013). Sedimentology and stratigraphy of an intra-cratonic basin coal seam gas play: Walloon Subgroup of the Surat Basin, eastern Australia. Petroleum Geoscience, 19, 21–38.

    Article  CAS  Google Scholar 

  • Mastalerz, M., & Drobniak A. (2020). Coalbed Methane: Reserves, Production, and Future Outlook. In: Future Energy (3rd ed., pp. 97–109).

  • Mohamed, T., & Mehana, M. (2020). Coalbed methane characterization and modeling: Review and outlook. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465. https://doi.org/10.1080/15567036.2020.1845877

    Article  Google Scholar 

  • Montgomery, S. L. (1999). Powder River Basin, Wyoming: An expanding coalbed methane (CBM) play. AAPG Bulletin, 83, 1207–1222.

    Google Scholar 

  • Moore, T. A. (2012). Coalbed methane: A review. International Journal of Coal Geology, 101, 36–81.

    Article  CAS  Google Scholar 

  • Morris, J. R., & Martin, M. A. (2016). Coal architecture, high-resolution correlation and connectivity: New insights from the Walloon Subgroup in the Surat Basin of SE Queensland, Australia. Petroleum Geoscience, 23, 251–261.

    Article  Google Scholar 

  • Mukherjee, S., Rajabi, M., Esterle, J., & Copley, J. (2020). Subsurface fractures, in-situ stress and permeability variations in the Walloon Coal Measures, eastern Surat Basin, Queensland. Australia. International Journal of Coal Geology, 222, 103449.

    Article  CAS  Google Scholar 

  • Nie, B. S., Liu, X. F., Yang, L. L., Meng, J. Q., & Li, X. C. (2015). Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel, 158, 908–917.

    Article  CAS  Google Scholar 

  • Ouyang, Z. Q., Liu, D. M., Cai, Y. D., & Yao, Y. B. (2016). Fractal analysis on heterogeneity of pore–fractures in middle–high rank coals with NMR. Energy and Fuels, 30(7), 5449–5458.

    Article  CAS  Google Scholar 

  • Qin, Y., Moore, T. A., Shen, J., Yang, Z. B., Shen, Y. L., & Wang, G. (2018). Resources and geology of coalbed methane in China: A review. International Geology Review, 60, 777–812.

    Article  ADS  Google Scholar 

  • Qu, J., Shen, J., Han, L., Ji, C. J., & Cheng, H. J. (2022). Characteristics of fractures in different macro-coal components in high-rank coal based on CT images. Natural Gas Industry, 42, 76–86.

    Google Scholar 

  • Queensland Government. (2018). Petroleum and gas reserves statistics. Available online: https://www.data.qld.gov.au/dataset/petroleum-gas-production-and-reserve-statistics/resource/351e9bd4-d9a1-4d60-a2ed-0e56cae79c4a

  • Queensland Government. (2019). Petroleum and gas production statistics. Available online: https://www.data.qld.gov.au/dataset/petroleum-gas-production-and-reserve-statistics/resource/9746212a-e0c6-484d-95ad-b2be1c46027d

  • Ramandi, H. L., Mostaghimi, P., Armstrong, R. T., Saadatfar, M., & Pinczewski, W. V. (2016). Porosity and permeability characterization of coal: A micro-computed tomography study. International Journal of Coal Geology, 154, 57–68.

    Article  Google Scholar 

  • Salmachi, A., Rajabi, M., Wainman, C., Mackie, S., McCabe, P., Camac, B., & Clarkson, C. (2021). History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: A review. Energies, 14, 2651.

    Article  CAS  Google Scholar 

  • Scott, S., Anderson, B., Crosdale, P., Dingwall, J., & Leblang, G. (2004). Revised geology and coal seam gas characteristics of the Walloon Subgroup—Surat Basin, Queensland. In P. J. Boult, D. R. Johns, & S. C. Lang (Eds.), Eastern Australasian basins symposium II (pp. 345–355). Petroleum Exploration Society of Australia.

    Google Scholar 

  • Shen, J., Qin, Y., & Zhao, J. C. (2019). Maceral contribution to pore size distribution in anthracite in the south Qinshui Basin. Energy and Fuels, 33, 7234–7243.

    Article  CAS  Google Scholar 

  • Shields, D., & Esterle, J. (2015). Regional insights into the sedimentary organisation of the Walloon Subgroup, Surat Basin, Queensland. Australian Journal of Earth Sciences, 62, 949–967.

    Article  ADS  CAS  Google Scholar 

  • Su, X. B., Feng, Y. L., Chen, J. F., & Pan, J. N. (2001). The characteristics and origins of cleat in coal from Western North China. International Journal of Coal Geology, 47, 51–62.

    Article  CAS  Google Scholar 

  • Sun, X. X., Yao, Y. B., Ripepi, N., & Liu, D. M. (2018). A novel method for gas–Water relative permeability measurement of coal using NMR relaxation. Transport in Porous Media, 124, 73–90.

    Article  CAS  Google Scholar 

  • Tao, S., Chen, S. D., Tang, D. Z., Zhao, X., Xu, H., & Li, S. (2018). Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump: A case of eastern Junggar Basin, China. Fuel, 211, 804–815.

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069.

    Article  CAS  Google Scholar 

  • Thompson, S., Morley, R. J., Barnard, P. C., & Cooper, B. S. (1985). Facies recognition of some Tertiary coals applied to prediction of oil source rock occurrence. Marine and Petroleum Geology, 2(4), 288–297.

    Article  ADS  CAS  Google Scholar 

  • Wang, G., Shen, J. N., Liu, S. M., Jiang, C. H., & Qin, X. J. (2019). Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. International Journal of Rock Mechanics and Mining Sciences, 123, 104082.

    Article  Google Scholar 

  • Xin, F. D., Xu, H., Tang, D. Z., & Cao, C. (2022). Differences in accumulation patterns of low-rank coalbed methane in China under the control of the first coalification jump. Fuel, 324, 124657.

    Article  CAS  Google Scholar 

  • Xu, J. Z., Zhai, C., Ranjith, P. G., Sang, S. X., Sun, Y., Cong, Y. Z., Tang, W., & Zheng, Y. F. (2022). Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery. Energy, 239, 122145.

    Article  CAS  Google Scholar 

  • Yao, Y. B., Liu, D. M., Cai, Y. D., & Li, J. Q. (2010a). Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography. Science China: Earth Sciences, 53, 854–862.

    Article  ADS  CAS  Google Scholar 

  • Yao, Y. B., Liu, D. M., Che, Y., Tang, D. Z., Tang, S. H., & Huang, W. H. (2010b). Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 89, 1371–1380.

    Article  CAS  Google Scholar 

  • Yao, Y. B., Liu, D. M., Tang, D. Z., Tang, S. H., & Huang, W. H. (2008). Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 73, 27–42.

    Article  CAS  Google Scholar 

  • Yao, Y. B., Liu, D. M., Tang, D. Z., Tang, S. H., Huang, W. H., Liu, Z. H., & Che, Y. (2009). Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Computers and Geosciences, 35, 1159–1166.

    Article  ADS  CAS  Google Scholar 

  • Zhang, C., Zhao, Y. S., Feng, Z. J., Meng, Q. R., Wang, L., & Lu, Y. (2023). Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis. Energy, 263, 125863.

    Article  CAS  Google Scholar 

  • Zhang, S. H., Tang, S. H., Tang, D. Z., Pan, Z. J., & Yang, J. (2010). The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. International Journal of Coal Geology, 81, 117–127.

    Article  CAS  Google Scholar 

  • Zhang, Z., Qin, Y., Zhuang, X. G., Li, G. Q., & Wang, X. M. (2018). Poroperm characteristics of high-rank coals from Southern Qinshui Basin by mercury intrusion, SEM-EDS, nuclear magnetic resonance and relative permeability analysis. Journal of Natural Gas Science and Engineering, 51, 116–128.

    Article  Google Scholar 

  • Zhang, Z., Yan, D. T., Yang, S. G., Zhuang, X. G., Li, G. Q., Wang, G., & Wang, X. M. (2020). Experimental studies on the movable-water saturations of different-scale pores and relative permeability of low-medium rank coals from the Southern Junggar Basin. Journal of Natural Gas Science and Engineering, 83, 103585.

    Article  CAS  Google Scholar 

  • Zhao, W., Wang, K., Liu, S. M., Ju, Y., Zhou, H. W., Fan, L., Yang, Y., Cheng, Y. P., & Zhang, X. L. (2020). Asynchronous difference in dynamic characteristics of adsorption swelling and mechanical compression of coal: Modeling and experiments. International Journal of Rock Mechanics and Mining Sciences, 135, 104498.

    Article  Google Scholar 

  • Zhao, J. L., Xu, H., Tang, D. Z., Mathews, J. P., Li, S., & Tao, S. (2016a). Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. International Journal of Coal Geology, 159, 18–29.

    Article  CAS  Google Scholar 

  • Zhao, L., Qin, Y., Cai, C. F., Xie, Y. W., Wang, G., Huang, B., & Xu, C. L. (2016b). Control of coal facies to adsorption-desorption divergence of coals: A case from the Xiqu Drainage Area, Gujiao CBM Block, North China. International Journal of Coal Geology, 171, 169–184.

    Article  Google Scholar 

  • Zhao, Y. X., Liu, S. M., Elsworth, D., Jiang, Y. D., & Zhu, J. (2014). Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy. Energy & Fuels, 28, 3704–3711.

    Article  CAS  Google Scholar 

  • Zheng, S. J., Yao, Y. B., Liu, D. M., Cai, Y. D., & Liu, Y. (2018). Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis theory. International Journal of Coal Geology, 196, 148–158.

    Article  CAS  Google Scholar 

  • Zielar, L., Littke, R., & Schwarzbauer, J. (2018). Chemical and structural changes in vitrinites and megaspores from Carboniferous coals during maturation. International Journal of Coal Geology, 185, 91–102.

    Article  Google Scholar 

  • Zou, C. N., Yang, Z., Huang, S. P., Ma, F., Sun, Q. P., Li, F. H., Pan, S. Q., & Tian, W. G. (2019). Resource types, formation, distribution and prospects of coal-measure gas. Petroleum Exploration and Development, 46(3), 451–462.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the commissioned project of PetroChina Research Institute of Petroleum Exploration & Development (No. RIPED-2022-JS-1301), and the National Natural Science Foundation of China (No. 42130802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Zhang, Z., Huang, W. et al. Pore–Fracture Structure Characteristics of Low-Medium Rank Coals from Eastern Surat Basin by FE-SEM and NMR Experiments. Nat Resour Res 33, 743–763 (2024). https://doi.org/10.1007/s11053-023-10304-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10304-2

Keywords

Navigation