Skip to main content

Advertisement

Log in

ArcMPM: An ArcEngine-Based Software for Mineral Prospectivity Mapping via Artificial Intelligence Algorithms

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Various artificial intelligence (AI) algorithms have been employed successfully to map mineral prospectivity for a specific mineral deposit type to assist mineral exploration. Numerous tools have been developed to incorporate AI algorithms, such as ArcSDM and ArcGIS. However, existing tools remain inadequate for geologist-friendly functions, and they are not fully tailored for mineral prospectivity mapping (MPM). This limitation has impeded the advancement and utilization of AI algorithms in MPM. Thus, this study introduced a novel ArcEngine-based software named ArcMPM to expeditiously integrate multi-source prospecting information for MPM using AI algorithms. ArcMPM was developed using Python and C#, based on ArcEngine and Visual Studio 2012, which incorporate two popular machine learning (ML) approaches: random forests (RFs) and convolutional neural networks (CNNs), representing shallow ML and deep learning algorithms, respectively. Moreover, it encompasses a complete procedure suitable for MPM by utilizing the RF and CNN models from sample generation to model evaluation. A case study in the Baguio region of the Philippines illustrated the convenience and effectiveness of utilizing ArcMPM for MPM. The success-rate curves demonstrated that the RF and CNN models developed in ArcMPM, particularly the CNN, exhibited high accuracy in delineating high-prospectivity areas. In addition, the case study proved that, in contrast to other GIS tools, ArcMPM can conveniently generate positive and negative samples under geological constraints, customize the model structure to suit the MPM according to the needs of geologists, and provide evaluation metrics that are accessible and practical to geologists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  • Agterberg, F. (2021). Aspects of regional and worldwide mineral resource prediction. Journal of Earth Science, 32(2), 279–287.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14(1), 1–17.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS. Pergamon Press.

    Google Scholar 

  • Bramer, M. (2020). Avoiding overfitting of decision trees. Principles of data mining (pp. 121–136). Springer.

    Chapter  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Cao, M., Evans, N. J., Hollings, P., Cooke, D. R., McInnes, B. I. A., Qin, K., & Li, G. (2018). Phenocryst zonation in porphyry-related rocks of the Baguio District, Philippines: Evidence for magmatic and metallogenic processes. Journal of Petrology, 59(5), 825–848.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2000). Geologically-constrained probabilistic mapping of gold potential, Baguio district Philippines. Natural Resources Research, 9(3), 237–253.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Exploration and Mining Geology: Journal of the Geological Society of CIM, 10, 165–175.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2002). Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Natural Resources Research, 11, 45–59.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2003). Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geology Reviews, 22(1), 117–132.

    Article  Google Scholar 

  • Carranza, E. J. M., Hale, M., & Faassen, C. (2008). Selection of coherent deposit-type locations and their application in data-driven mineral prospectivity mapping. Ore Geology Reviews, 33, 536–558.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Computers & Geosciences, 74, 60–70.

    Article  Google Scholar 

  • Cheng, Q. (2000). GeoData Analysis System (GeoDAS) for mineral exploration: Users guide and exercise manual. Material for the TrainingWorkshop on GeoDAS held at York University.

    Google Scholar 

  • Cheng, Q. (2007). Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1–2), 314–324.

    Article  Google Scholar 

  • Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55–70.

    Article  Google Scholar 

  • Cooke, D. R., McPhail, D. C., & Bloom, M. S. (1996). Epithermal gold mineralization, Acupan, Baguio district, Philippines; Geology, mineralization, alteration, and the thermochemical environment of ore deposition. Economic Geology and the Bulletin of the Society of Economic Geologists, 91(2), 243–272.

    Article  Google Scholar 

  • Cracknell, M. J., & Reading, A. M. (2013). The upside of uncertainty: Identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines. Geophysics, 78(3), WB113–WB126.

    Article  Google Scholar 

  • Daviran, M., Maghsoudi, A., Ghezelbash, R., & Pradhan, B. (2021). A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Computers & Geosciences, 148, 104688.

    Article  Google Scholar 

  • Deng, H., Zheng, Y., Chen, J., Yu, S., Xiao, K., & Mao, X. (2022). Learning 3D mineral prospectivity from 3D geological models using convolutional neural networks: Application to a structure-controlled hydrothermal gold deposit. Computers & Geosciences, 161, 105074.

    Article  Google Scholar 

  • Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(61), 2121–2159.

    Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Fernandez, H. E., Damasco, F. V., & Sangalang, L. A. (1979). Gold ore shoot development in the Antamok Mines. Philippines. Economic Geology, 74(3), 606–627.

    Article  Google Scholar 

  • Ford, A. (2020). Practical implementation of random forest-based mineral potential mapping for porphyry Cu–Au mineralization in the eastern Lachlan Orogen, NSW, Australia. Natural Resources Research, 29(1), 267–283.

    Article  Google Scholar 

  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.

    Article  Google Scholar 

  • Harris, J. R., & Grunsky, E. C. (2015). Predictive lithological mapping of Canada’s North using random forest classification applied to geophysical and geochemical data. Computers & Geosciences, 80, 9–25.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385

  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  • Li, S., Chen, J., & Xiang, J. (2020). Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Computing and Applications, 32(7), 2037–2053.

    Article  Google Scholar 

  • Li, S., Chen, J., Liu, C., & Wang, Y. (2021a). Mineral prospectivity prediction via convolutional neural networks based on geological big data. Journal of Earth Science, 32(2), 327–347.

    Article  Google Scholar 

  • Li, T., Zuo, R., Xiong, Y., & Peng, Y. (2021b). Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Natural Resources Research, 30(1), 27–38.

    Article  Google Scholar 

  • Li, T., Zuo, R., Zhao, X., & Zhao, K. (2022). Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data. Ore Geology Reviews, 142, 104693.

    Article  Google Scholar 

  • Mitchell, A. H. G., & Balce, G. R. (1990). Geological features of some epithermal gold systems, Philippines. Journal of Geochemical Exploration, 35(1), 241–296.

    Article  Google Scholar 

  • Mitchell, A. H. G., & Leach, T. M. (1991). Epithermal gold in the Philippines: Island arc metallogenesis, geothermal systems and geology. Academic Press.

    Google Scholar 

  • Nahm, F. S. (2022). Receiver operating characteristic curve: overview and practical use for clinicians. Korean journal of anesthesiology, 75(1), 25–36.

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2018). Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran. Ore Geology Reviews, 92, 97–112.

    Article  Google Scholar 

  • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32(1), 1–16.

    Article  Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.

    Article  Google Scholar 

  • Rodriguez-Galiano, V. F., Chica-Olmo, M., & Chica-Rivas, M. (2014). Predictive modelling of gold potential with the integration of multisource information based on random forest: A case study on the Rodalquilar area, Southern Spain. International Journal of Geographical Information Science, 28(7), 1336–1354.

    Article  Google Scholar 

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint arXiv:1505.04597

  • Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2017.00682

    Article  Google Scholar 

  • Sarker, I. H. (2021). Deep Learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2(6), 420.

    Article  Google Scholar 

  • Sawatzky, D. L., Raines, G. L., Bonham-Carter, G. F., & Looney, C. G. (2009) Spatial Data Modeller (SDM): ArcMAP 9.3 geoprocessing tools for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural networks.

  • Shi, Z., Zuo, R., & Zhou, B. (2023a). Deep reinforcement learning for mineral prospectivity mapping. Mathematical Geosciences, 55, 773–797.

    Article  Google Scholar 

  • Shi, Z., Zuo, R., Xiong, Y., Sun, S., & Zhou, B. (2023b). Revealing geochemical patterns associated with mineralization using t-distributed stochastic neighbor embedding and random forest. Mathematical Geosciences, 55(3), 321–344.

    Article  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

  • Singer, D. A. (2021). How deep learning networks could be designed to locate mineral deposits. Journal of Earth Science, 32(2), 288–292.

    Article  Google Scholar 

  • Sinha, N. K., & Griscik, M. P. (1971). A stochastic approximation method. IEEE Transactions on Systems, Man, and Cybernetics, 4, 338–344.

    Article  Google Scholar 

  • Tahmooresi, M., Babaei, B., & Dehghan, S. (2022). Mineral exploration modeling by convolutional neural network and continuous genetic algorithm: A case study in Khorasan Razavi. Iran. Arabian Journal of Geosciences, 15(21), 1647.

    Article  Google Scholar 

  • Tieleman, T., & Hinton, G. (2012). Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 26–31.

    Google Scholar 

  • Trottier, L., Giguere, P., & Chaib-draa, B. (2017). Parametric exponential linear unit for deep convolutional neural networks. In 16th IEEE International Conference on Machine Learning and Applications, pp. 207–214.

  • Wang, J., Zuo, R., & Xiong, Y. (2020). Mapping mineral prospectivity via semi-supervised random forest. Natural Resources Research, 29(1), 189–202.

    Article  Google Scholar 

  • Wolfe, J. A. (1988). Arc magmatism and mineralization in north Luzon and its relationship to subduction at the east Luzon and north manila trenches. Journal of Southeast Asian Earth Sciences, 2, 79–93.

    Article  Google Scholar 

  • Xiang, J., Xiao, K., Carranza, E. J. M., Chen, J., & Li, S. (2020). 3D mineral prospectivity mapping with random forests: A case study of Tongling, Anhui. China. Natural Resources Research, 29(1), 395–414.

    Article  Google Scholar 

  • Xiong, Y., Zuo, R., & Carranza, E. J. M. (2018). Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geology Reviews, 102, 811–817.

    Article  Google Scholar 

  • Xu, Y., Zuo, R., & Zhang, G. (2023). The graph attention network and its post-hoc explanation for recognizing mineralization-related geochemical anomalies. Applied Geochemistry, 155, 105722.

    Article  Google Scholar 

  • Yang, F., Wang, Z., Zuo, R., Sun, S., & Zhou, B. (2023). Quantification of uncertainty associated with evidence layers in mineral prospectivity mapping using direct sampling and convolutional neural network. Natural Resources Research, 32(1), 79–98.

    Article  Google Scholar 

  • Yang, N., Zhang, Z., Yang, J., & Hong, Z. (2022). Applications of data augmentation in mineral prospectivity prediction based on convolutional neural networks. Computers & Geosciences, 161, 105075.

    Article  Google Scholar 

  • Yin, B., Zuo, R., & Xiong, Y. (2022). Mineral prospectivity mapping via gated recurrent unit model. Natural Resources Research, 31(4), 2065–2079.

    Article  Google Scholar 

  • Ying, X. (2019). An overview of overfitting and its solutions. Journal of Physics: Conference Series, 1168(2), 022022.

    Google Scholar 

  • Zhang, C., Zuo, R., & Xiong, Y. (2021). Detection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature method. Applied Geochemistry, 130, 104994.

    Article  Google Scholar 

  • Zuo, R. (2016). A nonlinear controlling function of geological features on magmatic–hydrothermal mineralization. Scientific Reports, 6(1), 27127.

    Article  Google Scholar 

  • Zuo, R. (2020). Geodata science-based mineral prospectivity mapping: A review. Natural Resources Research, 29(6), 3415–3424.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2023). Machine learning-based mapping for mineral exploration. Mathematical Geosciences, 55(7), 891–895.

    Article  Google Scholar 

  • Zuo, R., & Wang, J. (2020a). ArcFractal: An ArcGIS add-in for processing geoscience data using fractal/multifractal models. Natural Resources Research, 29(1), 3–12.

    Article  Google Scholar 

  • Zuo, R., & Wang, Z. (2020b). Effects of random negative training samples on mineral prospectivity mapping. Natural Resources Research, 29(6), 3443–3455.

    Article  Google Scholar 

  • Zuo, R., & Xu, Y. (2023). Graph deep learning model for mapping mineral prospectivity. Mathematical Geosciences, 55(1), 1–21.

    Article  Google Scholar 

  • Zuo, R., & Xu, Y. (2024). A physically constrained hybrid deep learning model to mine a geochemical data cube in support of mineral exploration. Computers & Geosciences, 182, 105490.

    Article  Google Scholar 

  • Zuo, R., Luo, Z., Xiong, Y., & Yin, B. (2022). A geologically constrained variational autoencoder for mineral prospectivity mapping. Natural Resources Research, 31(3), 1121–1133.

    Article  Google Scholar 

  • Zuo, R., Xiong, Y., Wang, Z., & Kreuzer, O. P. (2023). A new generation of artificial intelligence algorithms for mineral prospectivity mapping. Natural Resources Research, 32(5), 1859–1869.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for three reviewers’ comments and suggestions which helped us improve this study. This study was supported by the Natural Science Foundation of Hubei Province (China) (2023AFA001), the National Natural Science Foundation of China (42172326, 42321001), and the Henan Province Key Research and Development Special Fund (221111320600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renguang Zuo.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R., Shi, L., Yang, F. et al. ArcMPM: An ArcEngine-Based Software for Mineral Prospectivity Mapping via Artificial Intelligence Algorithms. Nat Resour Res 33, 1–21 (2024). https://doi.org/10.1007/s11053-023-10286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10286-1

Keywords

Navigation