当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Acceleration of electrons in the plasma wakefield of a proton bunch
Nature ( IF 50.5 ) Pub Date : 2018-08-29 , DOI: 10.1038/s41586-018-0485-4
E. Adli , A. Ahuja , O. Apsimon , R. Apsimon , A.-M. Bachmann , D. Barrientos , F. Batsch , J. Bauche , V. K. Berglyd Olsen , M. Bernardini , T. Bohl , C. Bracco , F. Braunmüller , G. Burt , B. Buttenschön , A. Caldwell , M. Cascella , J. Chappell , E. Chevallay , M. Chung , D. Cooke , H. Damerau , L. Deacon , L. H. Deubner , A. Dexter , S. Doebert , J. Farmer , V. N. Fedosseev , R. Fiorito , R. A. Fonseca , F. Friebel , L. Garolfi , S. Gessner , I. Gorgisyan , A. A. Gorn , E. Granados , O. Grulke , E. Gschwendtner , J. Hansen , A. Helm , J. R. Henderson , M. Hüther , M. Ibison , L. Jensen , S. Jolly , F. Keeble , S.-Y. Kim , F. Kraus , Y. Li , S. Liu , N. Lopes , K. V. Lotov , L. Maricalva Brun , M. Martyanov , S. Mazzoni , D. Medina Godoy , V. A. Minakov , J. Mitchell , J. C. Molendijk , J. T. Moody , M. Moreira , P. Muggli , E. Öz , C. Pasquino , A. Pardons , F. Peña Asmus , K. Pepitone , A. Perera , A. Petrenko , S. Pitman , A. Pukhov , S. Rey , K. Rieger , H. Ruhl , J. S. Schmidt , I. A. Shalimova , P. Sherwood , L. O. Silva , L. Soby , A. P. Sosedkin , R. Speroni , R. I. Spitsyn , P. V. Tuev , M. Turner , F. Velotti , L. Verra , V. A. Verzilov , J. Vieira , C. P. Welsch , B. Williamson , M. Wing , B. Woolley , G. Xia

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1–5, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse6–9 or electron bunch10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage13. Long, thin proton bunches can be used because they undergo a process called self-modulation14–16, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17–19 uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that our results are an important step towards the development of future high-energy particle accelerators21,22.Electron acceleration to very high energies is achieved in a single step by injecting electrons into a ‘wake’ of charge created in a 10-metre-long plasma by speeding long proton bunches.

中文翻译:

质子束等离子体尾流场中电子的加速

高能粒子加速器对于深入了解基本粒子和控制它们相互作用的力至关重要。为了增加粒子的能量或减小加速器的尺寸,需要开发新的加速方案。等离子体尾场加速 1-5,其中等离子体中的电子被激发,导致强电场(所谓的“尾场”),是一种很有前途的加速技术。实验表明,穿过等离子体的强激光脉冲 6-9 或电子束 10,11 可以驱动每米数十千兆伏及以上的电场——远远超过传统射频加速器所达到的电场(每米约 0.1 千兆伏)。然而,激光脉冲和电子束的低储存能量意味着需要多个加速阶段才能达到非常高的粒子能量5,12。质子束的使用是引人注目的,因为它们有可能在单个加速阶段驱动尾流场并将电子加速到高能量 13。可以使用长而细的质子束,因为它们经历了一个称为自调制的过程 14-16,一种粒子 - 等离子体相互作用,将束纵向分成一系列高密度微束,然后共振产生大的尾流场。CERN17-19 的高级尾波场 (AWAKE) 实验使用高强度质子束——其中每个质子的能量为 400 千兆电子伏特,导致总束能量为 19 千焦——以驱动 10 米长的尾波场等离子体。然后将电子束注入这个尾流场。在这里,我们展示了在 AWAKE 实验中加速到 2 千兆电子伏特的电子的测量结果,以演示质子驱动的等离子体尾流场加速。在各种等离子体条件下进行测量,发现加速度一致且可靠。该方案在单个加速阶段产生非常高能电子束的潜力20意味着我们的结果是朝着未来高能粒子加速器发展迈出的重要一步21,22。电子加速到非常高的能量是在一个单一的阶段实现的通过加速长质子束,将电子注入 10 米长的等离子体中产生的电荷“尾流”。在这里,我们展示了在 AWAKE 实验中加速到 2 千兆电子伏特的电子的测量结果,以演示质子驱动的等离子体尾流场加速。在各种等离子体条件下进行测量,发现加速度一致且可靠。该方案在单个加速阶段产生非常高能电子束的潜力20意味着我们的结果是朝着未来高能粒子加速器发展迈出的重要一步21,22。电子加速到非常高的能量是在一个单一的阶段实现的通过加速长质子束,将电子注入 10 米长的等离子体中产生的电荷“尾流”。在这里,我们展示了在 AWAKE 实验中加速到 2 千兆电子伏特的电子的测量结果,以演示质子驱动的等离子体尾流场加速。在各种等离子体条件下进行测量,发现加速度一致且可靠。该方案在单个加速阶段产生非常高能电子束的潜力20意味着我们的结果是朝着未来高能粒子加速器发展迈出的重要一步21,22。电子加速到非常高的能量是在一个单一的阶段实现的通过加速长质子束,将电子注入 10 米长的等离子体中产生的电荷“尾流”。在各种等离子体条件下进行测量,发现加速度一致且可靠。该方案在单个加速阶段产生非常高能电子束的潜力20意味着我们的结果是朝着未来高能粒子加速器发展迈出的重要一步21,22。电子加速到非常高的能量是在一个单一的阶段实现的通过加速长质子束,将电子注入 10 米长的等离子体中产生的电荷“尾流”。在各种等离子体条件下进行测量,发现加速度一致且可靠。该方案在单个加速阶段产生非常高能电子束的潜力20意味着我们的结果是朝着未来高能粒子加速器发展迈出的重要一步21,22。电子加速到非常高的能量是在一个单一的阶段实现的通过加速长质子束,将电子注入 10 米长的等离子体中产生的电荷“尾流”。
更新日期:2018-08-29
down
wechat
bug