当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reduced expansion and improved full-cell cycling of a SnOx#C embedded structure for lithium-ion batteries†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-07-19 00:00:00 , DOI: 10.1039/c8ta04822c
Lie Yang 1, 2, 3, 4, 5 , Liu-Yang Sun 1, 2, 3, 4, 5 , Rong-Rong Zhang 1, 2, 3, 4, 5 , Ya-Wen Xu 1, 2, 3, 4, 5 , Xiao-Hui Ning 1, 2, 3, 4, 5 , Yuan-Bin Qin 1, 2, 3, 4, 5 , R. Lakshmi Narayan 6, 7, 8, 9 , Ju Li 6, 9, 10, 11, 12 , Zhi-Wei Shan 1, 2, 3, 4, 5
Affiliation  

SnOx exhibits a much larger theoretical capacity compared to graphite as an anode material in lithium-ion batteries (LIBs). However, the cycling stability and initial coulombic efficiency (ICE) of SnOx based electrodes need to be improved. In this study, by coating carbon on a dried SnOx electrode film using one-step chemical vapor deposition, a SnOx#C composite is obtained, wherein ∼70 nm sized SnOx nanoparticles are uniformly dispersed and embedded in a carbon matrix. Owing to its relatively small electrochemical surface area and mechanical robustness, the ICE is largely improved from ∼40% to >65%. Besides, a Li-matched full cell with 36% excess LiCoO2 cathode material can run stably for more than 100 cycles at 0.1 A g−1, delivering a gravimetric and a volumetric capacity of 456 mA h g−1 and 644 mA h cm−3, respectively, which are superior to graphite. The lithiation/delithiation process of SnOx#C observed using an in situ transmission electron microscope technique reveals that the embedded structure expands by only ∼5%. Besides, the thickness increment of the electrode film after 100 cycles is measured to be 32%, which is much smaller than the acceptable 50% in the LIB industry, illustrating the good stability of the solid-electrolyte interphase (SEI) skeleton.

中文翻译:

锂离子电池 SnO x #C嵌入式结构的扩展减少并改善了全电池循环

与作为锂离子电池(LIBs)负极材料的石墨相比,SnO x具有更大的理论容量。然而,基于SnO x的电极的循环稳定性和初始库仑效率(ICE)需要提高。在这项研究中,通过使用一步化学气相沉积将碳涂覆在干燥的SnO x电极膜上,获得了SnO x #C复合材料,其中〜70 nm尺寸的SnO x纳米颗粒均匀分散并嵌入碳基质中。由于其相对较小的电化学表面积和机械强度,ICE的使用率从约40%大大提高到了65%以上。此外,与Li匹配的满电池具有36%的LiCoO 2过量阴极材料可以在0.1 A g -1下稳定运行100个以上的循环,其重量和体积容量分别为456 mA hg -1和644 mA h cm -3,优于石墨。使用原位透射电子显微镜技术观察到的SnO x #C的锂化/去锂化过程表明,嵌入结构仅扩展了约5%。此外,在100次循环后电极膜的厚度增量经测量为32%,比LIB工业中可接受的50%小得多,这说明了固体电解质中间相(SEI)骨架的良好稳定性。
更新日期:2018-07-19
down
wechat
bug