Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Capillarity-induced folds fuel extreme shape changes in thin wicked membranes
Science ( IF 44.7 ) Pub Date : 2018-04-19 , DOI: 10.1126/science.aaq0677 Paul Grandgeorge 1 , Natacha Krins 2 , Aurélie Hourlier-Fargette 1, 3 , Christel Laberty-Robert 2 , Sébastien Neukirch 1 , Arnaud Antkowiak 1, 4
Science ( IF 44.7 ) Pub Date : 2018-04-19 , DOI: 10.1126/science.aaq0677 Paul Grandgeorge 1 , Natacha Krins 2 , Aurélie Hourlier-Fargette 1, 3 , Christel Laberty-Robert 2 , Sébastien Neukirch 1 , Arnaud Antkowiak 1, 4
Affiliation
Reserving the right to stretch Retractable antennae or certain spider silks can stretch well beyond their apparent length because they have a reserve of material that lets them expand and contract over much longer distances. Grandgeorge et al. made nonwoven fibrous membranes by electrospinning a block copolymer with varying ratios of two components. They infused these membranes with a liquid that let the fibers buckle and fold without changing the apparent surface area. When the membranes were stretched, this material could unbuckle and slide along the membrane surface, allowing it to extend without breakage. Science, this issue p. 296 Liquid-supported self-assembling membrane reserves allow for extreme deformations of polymer membranes. Soft deformable materials are needed for applications such as stretchable electronics, smart textiles, or soft biomedical devices. However, the design of a durable, cost-effective, or biologically compatible version of such a material remains challenging. Living animal cells routinely cope with extreme deformations by unfolding preformed membrane reservoirs available in the form of microvilli or membrane folds. We synthetically mimicked this behavior by creating nanofibrous liquid-infused tissues that spontaneously form similar reservoirs through capillarity-induced folding. By understanding the physics of membrane buckling within the liquid film, we developed proof-of-concept conformable chemical surface treatments and stretchable basic electronic circuits.
中文翻译:
毛细管作用引起的褶皱促进了薄芯膜的极端形状变化
保留伸展的权利 可伸缩触角或某些蜘蛛丝可以伸展得远远超过它们的表观长度,因为它们有足够的材料储备,可以让它们在更长的距离内膨胀和收缩。格兰乔治等人。通过静电纺丝具有不同比例的两种组分的嵌段共聚物制成非织造纤维膜。他们将液体注入这些膜,让纤维在不改变表观表面积的情况下弯曲和折叠。当膜被拉伸时,这种材料可以解开并沿着膜表面滑动,使其延伸而不会破裂。科学,这个问题 p。296 液体支撑的自组装膜储备允许聚合物膜的极端变形。可拉伸电子产品、智能纺织品等应用需要柔软的可变形材料 或软生物医学设备。然而,这种材料的耐用、经济或生物相容版本的设计仍然具有挑战性。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。
更新日期:2018-04-19
中文翻译:
毛细管作用引起的褶皱促进了薄芯膜的极端形状变化
保留伸展的权利 可伸缩触角或某些蜘蛛丝可以伸展得远远超过它们的表观长度,因为它们有足够的材料储备,可以让它们在更长的距离内膨胀和收缩。格兰乔治等人。通过静电纺丝具有不同比例的两种组分的嵌段共聚物制成非织造纤维膜。他们将液体注入这些膜,让纤维在不改变表观表面积的情况下弯曲和折叠。当膜被拉伸时,这种材料可以解开并沿着膜表面滑动,使其延伸而不会破裂。科学,这个问题 p。296 液体支撑的自组装膜储备允许聚合物膜的极端变形。可拉伸电子产品、智能纺织品等应用需要柔软的可变形材料 或软生物医学设备。然而,这种材料的耐用、经济或生物相容版本的设计仍然具有挑战性。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。活体动物细胞通常通过展开以微绒毛或膜褶皱形式可用的预制膜库来应对极端变形。我们通过创建纳米纤维液体注入组织来综合模拟这种行为,这些组织通过毛细血管诱导折叠自发形成类似的储库。通过了解液膜内膜屈曲的物理原理,我们开发了概念验证符合性化学表面处理和可拉伸的基本电子电路。