当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cocatalysts in Semiconductor‐based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201704649 Jingrun Ran 1 , Mietek Jaroniec 2 , Shi-Zhang Qiao 1, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/adma.201704649 Jingrun Ran 1 , Mietek Jaroniec 2 , Shi-Zhang Qiao 1, 3
Affiliation
Ever‐increasing fossil‐fuel combustion along with massive CO2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO2 reduction represents a promising strategy for clean, cost‐effective, and environmentally friendly conversion of CO2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half‐reaction of CO2 conversion with an oxidative half reaction, e.g., H2O oxidation, to create a carbon‐neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO2 conversion: (i) solar‐light absorption, (ii) charge separation/migration, and (iii) catalytic CO2 reduction and H2O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO2‐reduction cocatalysts for semiconductor‐based photocatalytic CO2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided.
中文翻译:
基于半导体的光催化二氧化碳还原中的助催化剂:成就,挑战和机遇
化石燃料燃烧的不断增长以及大量的CO 2排放已引起全球能源危机和气候变化。光催化还原CO 2代表了一种有前途的战略,可通过利用太阳能将CO 2清洁,经济高效且环保地转化为碳氢燃料。该策略将CO 2转化的还原半反应与氧化半反应(例如H 2 O氧化)结合在一起,形成了碳中和循环,为解决全球能源和环境问题提供了可行的解决方案。光催化CO 2有三个关键过程转换:(i)太阳光吸收,(ii)电荷分离/迁移,以及(iii)催化CO 2还原和H 2 O氧化。尽管在优化前两个过程方面取得了显着进展,但为提高第三步的效率进行的研究却很少,这需要助催化剂的存在。通常,助催化剂起四个重要作用:(i)促进电荷分离/转移,(ii)提高CO 2还原的活性和选择性,(iii)增强光催化剂的稳定性,和(iv)抑制副反应或逆反应。在此,首次开发了所有基于半导体的光催化CO 2的CO 2还原助催化剂。总结了转换,并讨论了它们的功能和机制。最后,提供了该新兴领域的观点。
更新日期:2018-01-08
中文翻译:
基于半导体的光催化二氧化碳还原中的助催化剂:成就,挑战和机遇
化石燃料燃烧的不断增长以及大量的CO 2排放已引起全球能源危机和气候变化。光催化还原CO 2代表了一种有前途的战略,可通过利用太阳能将CO 2清洁,经济高效且环保地转化为碳氢燃料。该策略将CO 2转化的还原半反应与氧化半反应(例如H 2 O氧化)结合在一起,形成了碳中和循环,为解决全球能源和环境问题提供了可行的解决方案。光催化CO 2有三个关键过程转换:(i)太阳光吸收,(ii)电荷分离/迁移,以及(iii)催化CO 2还原和H 2 O氧化。尽管在优化前两个过程方面取得了显着进展,但为提高第三步的效率进行的研究却很少,这需要助催化剂的存在。通常,助催化剂起四个重要作用:(i)促进电荷分离/转移,(ii)提高CO 2还原的活性和选择性,(iii)增强光催化剂的稳定性,和(iv)抑制副反应或逆反应。在此,首次开发了所有基于半导体的光催化CO 2的CO 2还原助催化剂。总结了转换,并讨论了它们的功能和机制。最后,提供了该新兴领域的观点。