当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Imaging anyons with scanning tunneling microscopy
Physical Review X ( IF 11.6 ) Pub Date : Zlatko Papić, Roger S. K. Mong, Ali Yazdani, and Michael P. Zaletel
Physical Review X ( IF 11.6 ) Pub Date : Zlatko Papić, Roger S. K. Mong, Ali Yazdani, and Michael P. Zaletel
Anyons are exotic quasi-particles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-abelian statistics--a property that would help realize fault tolerant quantum computation. Non-abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases (2DEG) in the presence of a large magnetic field, such as the \nu=\tfrac{5}{2} FQH state. However, direct experimental evidence of anyons and tests that can distinguish between abelian and non-abelian quantum ground states with such excitations have remained elusive. Here we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the scanning tunneling microscope (STM). Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect - and perhaps ultimately manipulate - these exotic quasi-particles.
中文翻译:
用扫描隧道显微镜对任何部位进行成像
Anyon是具有分数电荷的奇异准粒子,可以作为强相互作用的物质拓扑量子相的基本激发而出现。与普通的费米子和玻色子不同,它们可能服从非阿贝尔统计-这将有助于实现容错量子计算。长期以来,人们一直预测非阿贝尔正离子会出现在存在大磁场(例如\ nu = \ tfrac {5})的二维电子气(2DEG)中形成的分数量子霍尔(FQH)相中。 {2} FQH状态。然而,通过这样的激发,任何能区分阿贝尔量子基态和非阿贝尔量子基态的实验和测试的直接实验证据仍然难以捉摸。在这里,我们提出了一种新的实验方法,用扫描隧道显微镜(STM)直接可视化FQH状态相互作用的电子状态的结构。我们的理论计算表明,如何在单个杂质缺陷附近使用STM进行光谱映射,以成像FQH状态下的分数统计,从而在此类测量中识别出可以区分不同提议基态的独特特征。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。在此类测量中识别独特的特征,以区分建议的不同基态。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。在此类测量中识别独特的特征,以区分建议的不同基态。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。
更新日期:2017-12-05
中文翻译:
用扫描隧道显微镜对任何部位进行成像
Anyon是具有分数电荷的奇异准粒子,可以作为强相互作用的物质拓扑量子相的基本激发而出现。与普通的费米子和玻色子不同,它们可能服从非阿贝尔统计-这将有助于实现容错量子计算。长期以来,人们一直预测非阿贝尔正离子会出现在存在大磁场(例如\ nu = \ tfrac {5})的二维电子气(2DEG)中形成的分数量子霍尔(FQH)相中。 {2} FQH状态。然而,通过这样的激发,任何能区分阿贝尔量子基态和非阿贝尔量子基态的实验和测试的直接实验证据仍然难以捉摸。在这里,我们提出了一种新的实验方法,用扫描隧道显微镜(STM)直接可视化FQH状态相互作用的电子状态的结构。我们的理论计算表明,如何在单个杂质缺陷附近使用STM进行光谱映射,以成像FQH状态下的分数统计,从而在此类测量中识别出可以区分不同提议基态的独特特征。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。在此类测量中识别独特的特征,以区分建议的不同基态。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。在此类测量中识别独特的特征,以区分建议的不同基态。局部被困的正因离子的存在应在STM光谱图中留下明显的特征,并能够采用一种新方法直接检测(或最终最终操纵)这些奇异的准粒子。