当前位置:
X-MOL 学术
›
Nat. Chem. Biol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bisphosphoglycerate mutase controls serine pathway flux via 3-phosphoglycerate
Nature Chemical Biology ( IF 12.9 ) Pub Date : 2017-08-07 00:00:00 , DOI: 10.1038/nchembio.2453 Rob C Oslund , Xiaoyang Su , Michael Haugbro , Jung-Min Kee , Mark Esposito , Yael David , Boyuan Wang , Eva Ge , David H Perlman , Yibin Kang , Tom W Muir , Joshua D Rabinowitz
Nature Chemical Biology ( IF 12.9 ) Pub Date : 2017-08-07 00:00:00 , DOI: 10.1038/nchembio.2453 Rob C Oslund , Xiaoyang Su , Michael Haugbro , Jung-Min Kee , Mark Esposito , Yael David , Boyuan Wang , Eva Ge , David H Perlman , Yibin Kang , Tom W Muir , Joshua D Rabinowitz
Lower glycolysis involves a series of reversible reactions, which interconvert intermediates that also feed anabolic pathways. 3-phosphoglycerate (3-PG) is an abundant lower glycolytic intermediate that feeds serine biosynthesis via the enzyme phosphoglycerate dehydrogenase, which is genomically amplified in several cancers. Phosphoglycerate mutase 1 (PGAM1) catalyzes the isomerization of 3-PG into the downstream glycolytic intermediate 2-phosphoglycerate (2-PG). PGAM1 needs to be histidine phosphorylated to become catalytically active. We show that the primary PGAM1 histidine phosphate donor is 2,3-bisphosphoglycerate (2,3-BPG), which is made from the glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) by bisphosphoglycerate mutase (BPGM). When BPGM is knocked out, 1,3-BPG can directly phosphorylate PGAM1. In this case, PGAM1 phosphorylation and activity are decreased, but nevertheless sufficient to maintain normal glycolytic flux and cellular growth rate. 3-PG, however, accumulates, leading to increased serine synthesis. Thus, one biological function of BPGM is controlling glycolytic intermediate levels and thereby serine biosynthetic flux.
中文翻译:
Bisphosphoglycerate突变酶通过3-phosphoglycerate控制丝氨酸途径通量
低级糖酵解涉及一系列可逆反应,这些反应可相互转化中间体,这些中间体也可提供合成代谢途径。3-磷酸甘油酸(3-PG)是一种丰富的低级糖酵解中间体,可通过磷酸甘油酸脱氢酶来提供丝氨酸的生物合成,该酶在一些癌症中被基因组扩增。磷酸甘油酸突变酶1(PGAM1)催化3-PG异构化为下游糖酵解中间体2-磷酸甘油酸(2-PG)。PGAM1需要被组氨酸磷酸化才能具有催化活性。我们显示主要的PGAM1组氨酸磷酸供体是2,3-双磷酸甘油酸酯(2,3-BPG),它是由双磷酸甘油酸突变酶(BPGM)由糖酵解中间体1,3-双磷酸甘油酸酯(1,3-BPG)制成的。当BPGM被敲除时,1,3-BPG可以直接磷酸化PGAM1。在这种情况下,PGAM1的磷酸化和活性降低,但是仍然足以维持正常的糖酵解通量和细胞生长速率。然而,3-PG积累,导致丝氨酸合成增加。因此,BPGM的一种生物学功能是控制糖酵解中间水平,从而控制丝氨酸生物合成通量。
更新日期:2017-09-20
中文翻译:
Bisphosphoglycerate突变酶通过3-phosphoglycerate控制丝氨酸途径通量
低级糖酵解涉及一系列可逆反应,这些反应可相互转化中间体,这些中间体也可提供合成代谢途径。3-磷酸甘油酸(3-PG)是一种丰富的低级糖酵解中间体,可通过磷酸甘油酸脱氢酶来提供丝氨酸的生物合成,该酶在一些癌症中被基因组扩增。磷酸甘油酸突变酶1(PGAM1)催化3-PG异构化为下游糖酵解中间体2-磷酸甘油酸(2-PG)。PGAM1需要被组氨酸磷酸化才能具有催化活性。我们显示主要的PGAM1组氨酸磷酸供体是2,3-双磷酸甘油酸酯(2,3-BPG),它是由双磷酸甘油酸突变酶(BPGM)由糖酵解中间体1,3-双磷酸甘油酸酯(1,3-BPG)制成的。当BPGM被敲除时,1,3-BPG可以直接磷酸化PGAM1。在这种情况下,PGAM1的磷酸化和活性降低,但是仍然足以维持正常的糖酵解通量和细胞生长速率。然而,3-PG积累,导致丝氨酸合成增加。因此,BPGM的一种生物学功能是控制糖酵解中间水平,从而控制丝氨酸生物合成通量。