当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Substantial Intramolecular Charge Transfer Induces Long Emission Wavelengths and Mega Stokes Shifts in 6-Aminocoumarins
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-06-01 00:00:00 , DOI: 10.1021/acs.jpcc.7b04176
Xiaogang Liu 1, 2, 3 , Jacqueline M. Cole 1, 4, 5, 6 , Zhaochao Xu 7
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2017-06-01 00:00:00 , DOI: 10.1021/acs.jpcc.7b04176
Xiaogang Liu 1, 2, 3 , Jacqueline M. Cole 1, 4, 5, 6 , Zhaochao Xu 7
Affiliation
![]() |
Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Our results lead to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.
中文翻译:
大量的分子内电荷转移导致6-氨基香豆素的长发射波长和兆斯托克斯位移
香豆素广泛应用于许多生物成像和生物传感应用中。在各种香豆素衍生物中,6-氨基香豆素因其红移发射,兆斯托克斯位移和显着的溶剂变色现象而引起了越来越多的关注。这些光谱特征以及较弱的发射强度历来被归因于6-氨基香豆素中扭曲的分子内电荷转移(TICT)状态的形成。在这项工作中,我们证明实际上是导致这些荧光特性的实质性分子内电荷转移(ICT)。基于这一新的认识,我们重新分析了基于6-氨基香豆素的荧光探针的传感机理,并与实验数据取得了一致。
更新日期:2017-06-10
中文翻译:

大量的分子内电荷转移导致6-氨基香豆素的长发射波长和兆斯托克斯位移
香豆素广泛应用于许多生物成像和生物传感应用中。在各种香豆素衍生物中,6-氨基香豆素因其红移发射,兆斯托克斯位移和显着的溶剂变色现象而引起了越来越多的关注。这些光谱特征以及较弱的发射强度历来被归因于6-氨基香豆素中扭曲的分子内电荷转移(TICT)状态的形成。在这项工作中,我们证明实际上是导致这些荧光特性的实质性分子内电荷转移(ICT)。基于这一新的认识,我们重新分析了基于6-氨基香豆素的荧光探针的传感机理,并与实验数据取得了一致。