当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments
Science ( IF 56.9 ) Pub Date : 2024-05-16 , DOI: 10.1126/science.adl5549
Hao Liu 1 , Michael Matthies 1 , John Russo 2 , Lorenzo Rovigatti 2 , Raghu Pradeep Narayanan 1, 3 , Thong Diep 1 , Daniel McKeen 4 , Oleg Gang 4, 5, 6 , Nicholas Stephanopoulos 1 , Francesco Sciortino 2 , Hao Yan 1 , Flavio Romano 7, 8 , Petr Šulc 1, 9
Affiliation  

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.

中文翻译:


通过模型驱动实验逆向设计 DNA 折纸烧绿石晶格



复杂的统计力学方法和人类直觉已经证明了自组装复杂晶格或有限尺寸结构的可能性。然而,迄今为止的尝试大多仅在计算机上取得成功,而在实验中常常失败,因为与动力学减慢(凝胶化、玻璃化转变)和竞争有序结构相关的不可预测的陷阱。理论预测还面临着用实验上可用的纳米和微米尺寸颗粒编码所需颗粒间相互作用势的困难。为了克服这些问题,我们将 SAT 组装(一种基于约束优化的斑块粒子相互作用设计算法)与 DNA 纳米技术的粗粒度模拟相结合,通过实验实现无陷阱自组装途径。我们使用这种方法组装烧绿石三维晶格,因其在光学超材料构造中的前景而令人垂涎,并通过小角度 X 射线散射和扫描电子显微镜可视化对其进行表征。
更新日期:2024-05-16
down
wechat
bug