当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated “Electron Converter” Characteristics of NiCo-LDH for a CdS-Carbide Photocatalytic System with a Dual Heterointerface
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2024-05-03 , DOI: 10.1021/acssuschemeng.4c00778
Xujing Ji 1 , Jiayang Zhang 1 , Na Li 1 , Lijing Qiu 1 , Guoqing Zhang 1 , Xinping Duan 2 , Ruixin Wang 1
Affiliation  

Accelerating the electron transfer and thus inhibiting recombination of photogenerated carriers hold paramount significance for photocatalytic solar hydrogen generation. Introducing an intermediate transition layer in the Schottky junction structure would modulate the Schottky barrier and thus enhance the separation efficiency of photogenerated carriers. Herein, we insert an efficient NiCo-layered-double-hydroxide (NiCo-LDH) lamina between molybdenum carbide-supported reduced graphene oxide (Mo2C/rGO, abbreviated as MG) and CdS, fabricating the sandwich composite CdS@NiCo-LDH@Mo2C/rGO (noted as CLMG) for photogenerated hydrogen. The inserted NiCo-LDH enables the dual heterogeneous interface phase of CdS/NiCo-LDH and NiCo-LDH/Mo2C and decreases the Schottky barrier of CdS/Mo2C, boosting the electron transfer of CLMG. In addition, the experiments and DFT calculations indicate that the work functions increase in the order of CdS < NiCo-LDH < Mo2C. Benefiting from the unique nanoarchitecture of the catalyst, the unidirectional cascade electron transport is realized following the order of CdS → NiCo-LDH → Mo2C with NiCo-LDH as an accelerated “electron converter”, which eventually expedites the photogenerated electron transfer of CdS to Mo2C and boosts carrier separation as well as the hydrogen reduction of the integrated system, achieving a 135 times greater H2 production rate (58.07 mmol g–1 h–1) than pristine CdS (0.43 mmol g–1 h–1). Moreover, CLMG exhibits excellent durability.

中文翻译:

用于具有双异质界面的 CdS-碳化物光催化系统的 NiCo-LDH 的加速“电子转换器”特性

加速电子转移并从而抑制光生载流子的复合对于光催化太阳能制氢具有至关重要的意义。在肖特基结结构中引入中间过渡层可以调节肖特基势垒,从而提高光生载流子的分离效率。在此,我们在碳化钼负载的还原氧化石墨烯(Mo 2 C/rGO,缩写为MG)和CdS之间插入高效的NiCo层状双氢氧化物(NiCo-LDH)层,制备了夹层复合材料CdS@NiCo-LDH @Mo 2 C/rGO(记为CLMG)用于光生氢。插入的NiCo-LDH实现了CdS/NiCo-LDH和NiCo-LDH/Mo 2 C的双异质界面相,并降低了CdS/Mo 2 C的肖特基势垒,促进了CLMG的电子转移。此外,实验和DFT计算表明,功函数按CdS < NiCo-LDH < Mo 2 C的顺序增加。得益于催化剂独特的纳米结构,按照CdS→的顺序实现了单向级联电子传输NiCo-LDH→Mo 2 C,以NiCo-LDH作为加速“电子转换器”,最终加速CdS到Mo 2 C的光生电子转移,促进载流子分离以及集成系统的氢还原,实现了135 H 2生成速率 (58.07 mmol g –1 h –1 ) 是原始 CdS (0.43 mmol g –1 h –1 ) 的两倍。此外,CLMG还表现出优异的耐久性。
更新日期:2024-05-03
down
wechat
bug