当前位置: X-MOL 学术Int. J. Rock Mech. Min. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Freezing deformation of saturation-dependent porous media considering interface energy and microstructure effects: From thermodynamics-based macroscopic constitutive relation to micromechanical upscaling model
International Journal of Rock Mechanics and Mining Sciences ( IF 7.2 ) Pub Date : 2024-04-27 , DOI: 10.1016/j.ijrmms.2024.105733
Weiqi Guo , Jinhui Tang , Fengjuan Wang , Jinyang Jiang , Wenxiang Xu

This work provides a theoretical framework originated from thermodynamics and micromechanics theories to quantitatively determine the dependence of the freezing deformation of saturation-dependent porous media on the interface energy and microstructures. In the thermodynamics theory, the macroscopic constitutive model including the interface energy and three loading cases (i.e., elasticity, pore pressure, and thermal stress) is derived. Subsequently, in the micromechanics theory, an upscaling model for the macroscopic constitutive relation is obtained, incorporating microstructure information under three loading cases provided by the thermodynamics-based model. The constitutive form of the latter micromechanical upscaling model is the same as the former thermodynamics-based model. Importantly, the proposed upscaling model not only gives a powerful physical understanding of the freezing deformation affected by interface energy, microstructure characteristics of porous media, and environmental conditions, but also provides the microstructure-dependent thermo-poro-elastic properties as the freezing deformation capacity of porous media. Comparisons against experimental measurements of porous materials suggest the reliability of the present theoretical framework in estimating the freezing deformation of saturated and unsaturated porous media. The proposed model highlights the effects of pore configurations, such as pore size distribution (PSD) and porosity, on the freezing deformation of saturation-dependent porous media. The results elucidate that the interface energy reduces the pressure acting on the pore wall, which is more significant under unsaturated conditions. Furthermore, the effect of interface energy on freezing deformation strongly depends on PSD and saturation degrees of porous media. These results can provide guidance for evaluating infrastructure durability and designing frost-resistant porous materials.

中文翻译:

考虑界面能和微观结构效应的饱和度相关多孔介质的冻结变形:从基于热力学的宏观本构关系到微观力学放大模型

这项工作提供了一个源自热力学和微观力学理论的理论框架,用于定量确定饱和度相关多孔介质的冻结变形对界面能和微观结构的依赖性。在热力学理论中,推导了包括界面能和三种载荷工况(即弹性、孔隙压力和热应力)的宏观本构模型。随后,在微观力学理论中,获得了宏观本构关系的放大模型,结合了基于热力学的模型提供的三种载荷情况下的微观结构信息。后者的微机械放大模型的本构形式与前者的基于热力学的模型相同。重要的是,所提出的放大模型不仅对受界面能、多孔介质微观结构特征和环境条件影响的冻结变形提供了强有力的物理理解,而且还提供了与微观结构相关的热孔隙弹性特性作为冻结变形能力的多孔介质。与多孔材料实验测量的比较表明了当前理论框架在估计饱和和不饱和多孔介质的冻结变形方面的可靠性。所提出的模型强调了孔隙结构(例如孔径分布(PSD)和孔隙率)对饱和度相关多孔介质冻结变形的影响。结果表明,界面能降低了作用在孔壁上的压力,这在非饱和条件下更为显着。此外,界面能对冻结变形的影响很大程度上取决于多孔介质的PSD和饱和度。这些结果可以为评估基础设施耐久性和设计抗冻多孔材料提供指导。
更新日期:2024-04-27
down
wechat
bug