当前位置: X-MOL 学术Des. Codes Cryptogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Further results on covering codes with radius R and codimension $$tR+1$$
Designs, Codes and Cryptography ( IF 1.6 ) Pub Date : 2024-04-27 , DOI: 10.1007/s10623-024-01402-0
Alexander A. Davydov , Stefano Marcugini , Fernanda Pambianco

The length function \(\ell _q(r,R)\) is the smallest possible length n of a q-ary linear \([n,n-r]_qR\) code with codimension (redundancy) r and covering radius R. Let \(s_q(N,\rho )\) be the smallest size of a \(\rho \)-saturating set in the projective space \(\textrm{PG}(N,q)\). There is a one-to-one correspondence between \([n,n-r]_qR\) codes and \((R-1)\)-saturating n-sets in \(\textrm{PG}(r-1,q)\) that implies \(\ell _q(r,R)=s_q(r-1,R-1)\). In this work, for \(R\ge 3\), new asymptotic upper bounds on \(\ell _q(tR+1,R)\) are obtained in the following form:

$$\begin{aligned}&\bullet ~\ell _q(tR+1,R) =s_q(tR,R-1)\\&\hspace{0.4cm} \le \root R \of {\frac{R!}{R^{R-2}}}\cdot q^{(r-R)/R}\cdot \root R \of {\ln q}+o(q^{(r-R)/R}), \hspace{0.3cm} r=tR+1,~t\ge 1,\\&\hspace{0.4cm}~ q\text { is an arbitrary prime power},~q\text { is large enough};\\&\bullet ~\text { if additionally }R\text { is large enough, then }\root R \of {\frac{R!}{R^{R-2}}}\thicksim \frac{1}{e}\thickapprox 0.3679. \end{aligned}$$

The new bounds are essentially better than the known ones. For \(t=1\), a new construction of \((R-1)\)-saturating sets in the projective space \(\textrm{PG}(R,q)\), providing sets of small sizes, is proposed. The \([n,n-(R+1)]_qR\) codes, obtained by the construction, have minimum distance \(R + 1\), i.e. they are almost MDS (AMDS) codes. These codes are taken as the starting ones in the lift-constructions (so-called “\(q^m\)-concatenating constructions”) for covering codes to obtain infinite families of codes with growing codimension \(r=tR+1\), \(t\ge 1\).



中文翻译:

关于半径为 R 和余维 $$tR+1$$ 的覆盖代码的进一步结果

长度函数\(\ell _q(r,R)\)是具有余维(冗余)r和覆盖半径Rq元线性\([n,nr]_qR\)码的最小可能长度n。令\(s_q(N,\rho )\)为射影空间\(\textrm{PG}(N,q)\)中\(\rho \)饱和集的最小大小。\([n,nr]_qR\)码与\ (\textrm{PG}(r-1,q)中的\((R-1)\)饱和n集之间存在一一对应关系)\)意味着\(\ell _q(r,R)=s_q(r-1,R-1)\)。在这项工作中,对于\(R\ge 3\) , \(\ell _q(tR+1,R)\)上的新渐近上限通过以下形式获得:

$$\begin{对齐}&\bullet ~\ell _q(tR+1,R) =s_q(tR,R-1)\\&\hspace{0.4cm} \le \root R \of {\frac{ R!}{R^{R-2}}}\cdot q^{(rR)/R}\cdot \root R \of {\ln q}+o(q^{(rR)/R}), \hspace{0.3cm} r=tR+1,~t\ge 1,\\&\hspace{0.4cm}~ q\text { 是任意素数幂},~q\text { 足够大};\ \&\bullet ~\text { 如果另外 }R\text { 足够大,则 }\root R \of {\frac{R!}{R^{R-2}}}\thicksim \frac{1} {e}\thick约0.3679。 \end{对齐}$$

新的界限本质上比已知的界限更好。对于\(t=1\) ,射影空间\(\textrm{PG}(R,q)\)中的\((R-1)\)饱和集的新构造,提供小尺寸的集,被提议。构造得到的\([n,n-(R+1)]_qR\)码具有最小距离\(R+1\),即几乎是MDS(AMDS)码。这些代码被视为提升结构(所谓的“ \(q^m\) -连接结构”)中的起始代码,用于覆盖代码以获得具有不断增长的余维数\(r=tR+1\)的无限代码族。) , \(t\ge 1\)

更新日期:2024-04-27
down
wechat
bug