当前位置 : X-MOL首页行业资讯 › 这些年,Gernot Frenking的神预测

这些年,Gernot Frenking的神预测

近年来,理论计算化学发展迅速,适用范围从解释化学反应机理以及对化合物成键、光谱性质进行分析,到设计预测药物小分子和复杂生物蛋白分子的结合位点。目前,计算生物学已可以模拟细胞内的物质代谢过程。Journal of Computational Chemistry的主编,德国马尔堡菲利普大学(Philipps-Universität Marburg)Gernot Frenking教授(下图)在计算化学领域做出了杰出的贡献(Frenking教授2014年退休,之后在西班牙Donostia International Physics Center继续从事科研工作)。下面笔者将简要介绍他近十年对主族化学的三大神预测,这些理论预测均在发表后的几年内被实验化学家成功验证(一篇Angew + 一篇Science + 一篇Nature)。

Gernot Frenking教授。图片来自网络


按时间顺序,首先来看一下2007年Frenking教授对连烯烃1的预测(Fig. 1. Angew. Chem. Int. Ed., 2007, 46, 8695-8698)。普通的连烯烃由于中心碳原子以sp的杂化形式和相连的碳原子成键,具有化合物2的直线型构型,CCC键角为180度。但是在化合物1中,由于氮原子是强的π电子供体,迫使与氮相连的卡宾碳原子的π电子接收能力很弱(不易形成C=C双键),所以Frenking教授预测这种连烯烃具有弯曲的立体结构(当R=H,CCC键角125.8°),并且中心碳原子上会同时具有两对孤对电子(Fig. 2),可以看作是两个卡宾配体稳定的零价碳原子,是很强的Lewis碱。

Fig. 1. 连烯烃12的化学结构。图片来源: Angew. Chem. Int. Ed.


Fig. 2. 化合物1的前线分子轨道。图片来源: Angew. Chem. Int. Ed.


这一结构预测一经发表,就受到了很多主族化学家的关注。一年后的2008年,著名卡宾化学家、加州大学圣地亚哥分校的Guy Bertrand教授成功合成了这种“弯曲的连烯烃”化合物3(Fig. 3. Angew. Chem. Int. Ed., 2008, 47, 3206-3209)。在连烯烃3中,CCC的键角为134.8°。并且正如Frenking预测的一样,3显示出很强的Lewis碱性,可以和过渡金属进行配位。

Fig. 3. 连烯烃3的合成以及晶体结构。图片来源: Angew. Chem. Int. Ed.


2011年,Frenking又预测由双NHC卡宾稳定的双核13族元素会有不同的立体结构(Fig. 4. Chem. Eur. J., 2011, 17, 13517-13525)。双NHC稳定的B2化合物具有直线型的结构,硼原子和硼原子以B≡B三键的形式结合。然而第13族的其他元素则以双键的形式成键,显示出弯曲的立体结构。

Fig. 4. NHC2B2和NHC2Al2的不同立体结构。图片来源: Chem. Eur. J.


又是一年后的2012年,著名硼化学家、德国维尔茨堡大学的Holger Braunschweig教授成功分离表征了首例双NHC稳定的B2化合物6(Fig. 5. Science, 2012, 336, 1420-1422.)。化合物6中BBC键角约为173.0°,接近直线型立体构型。B≡B三键键长1.449 Å,是除了N≡N三键、C≡C三键以及2004年日本化学家Sekiguchi等人报道的SiSi三键(Science, 2004, 305, 1755-1757)之外的另一例双同原子主族元素的三重键。Frenking还应邀为此重大突破在Science上写了一篇Perspective(Science, 2012, 336, 1394-1395)

Fig. 5. 双NHC稳定的B2化合物6的合成。图片来源: Science


2012年,Frenking又预测了单配位的硼宾化合物具有接受两个Lewis碱的能力,极有可能会像过渡金属一样,生成稳定的双羰基类化合物(Fig. 6. Chem. Eur. J., 2012, 18, 5676-5692)

Fig. 6. 双羰基BH化合物的结构预测、HOMO轨道以及配体和B-H之间相互作用示意图。图片来源: Chem. Eur. J.


三年后的2015年,Holger Braunschweig又成功分离表征了首例双羰基硼宾化合物7(Fig. 7. Nature, 2015, 522, 327-330点击阅读详细)。其成键模式和立体结构与Frenking的预测基本吻合。Frenking还应邀为此重大突破在Nature上写了一篇Preview(Nature, 2015, 522, 297-298)

Fig. 7. 双羰基硼宾化合物7的晶体结构。图片来源: Nature


至此,Frenking教授的部分工作已经被成功验证。笔者相信还会有更多的“crazy”的分子结构会被相继突破。事实上,Frenking提出的很多理论也引起过其他化学家的争议,例如Angew上的两篇论文“Dative Bonds in Main-Group Compounds: A Case for Fewer Arrows!”“Dative Bonds in Main-Group Compounds: A Case for More Arrows!”。但是科学就是这样从争议中慢慢发展起来,笔者会在后续的文章中介绍一些仍然在争议中的理论问题。


最后引用爱因斯坦的一句话作为结尾,这也是爱因斯坦对后人的“神预测”。


(本文由chemliu供稿)


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

阿拉丁
分享您的投稿习惯
经济学SSCI期刊
英语语言编辑翻译加编辑新
加速出版服务新
1212购书送好礼
Springer旗下全新催化方向高质新刊
动物学生物学
系统生物学合成生物学
专注于基础生命科学与临床研究的交叉领域
传播分子、细胞和发育生物学领域的重大发现
聚焦分子细胞和生物体生物学
图书出版流程
快速找到合适的投稿机会
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
上海交大
华南理工
西湖大学
上海交大
爱尔兰
清华大学
福州大学
兰州化物所
南京大学
宁波
ACS材料视界
down
wechat
bug