当前位置 : X-MOL首页行业资讯 › 从氮气到氰基的转化:神奇的多钛框架

从氮气到氰基的转化:神奇的多钛框架

氰基化合物以一种重要的中间体,在医药、材料、精细化工等多个领域都有广发的应用。目前,氰基的制备绝大多数都是直接或间接以氨气为原料,而氨气的工业化生产主要依靠经典的人工固氮法-哈柏法(Haber-bosch reacton),即采用固体催化剂(如Fe3+),高压、高温条件下,N2/H2直接反应得到氨气,产率却不足20%。


极高的氮-氮键能(226 kcal/mol)导致N2的化学惰性,为了提高人工固氮的效率,在过去的几十年,化学工作者利用过渡金属配合物-强还原剂的条件来活化氮气。Cummins和Schneider等先后报道了氮化钼、氮化铌(Scheme 1a)和氮化铼(Scheme 1b)到氰基化合物的多步转化。最近,日本理化学研究所(RIKEN)的侯召民(Zhaomin Hou)研究员小组发现,该小组2013年发展的二酰亚胺四钛氢化物[(CpˊTi)43-NH)22-H)4],可以实现氮气的固定,得到二酰亚胺四钛氮化物[(CpˊTi)43-NH)22-N)4],并可以与多种酰氯发生进一步反应,得到氰基化合物,该成果发表在近期的Angew. Chem. Int. Ed.上。(Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. Angew. Chem. Int. Ed.,2016, 55, 12316-12320. DOI: 10.1002/anie.201607426)

图片来源: 百度百科及Angew. Chem. Int. Ed.


Scheme 1. 基于金属固氮法的氰基化合物合成。图片来源:Angew. Chem. Int. Ed.


在180 ℃、1个大气压N2条件下反应两天,棕紫色的氢化物1可以稳定地转化为深蓝色的氮化物2,收率95%;在类似的15N2条件下,可以得到15N标记的氮化物2-15N。经1.5当量的对二苯醌处理,22-15N可以转化为深绿色的脱氢产物,收率约80%,通过X-衍生单晶确认其结构如3所示(Scheme 2)。

Scheme 2. 基于氢化钛配合物的氮气活化。图片来源:Angew. Chem. Int. Ed.


在苯/60 ℃/12 h条件下,22-15N可以与多种不同的酰氯(芳基、烷基以及肉桂酰氯,含有硝基、卤素、醛等官能团)发生反应,得到氰基产物,收率可达67-85%(Scheme 3)。与Cummins和Schneider的报道所不同的是,上述反应无需任何添加剂(如还原剂、碱等)。在相同条件下,氮化物3则不能与酰氯发生反应。

Scheme 3. 基于氮化钛配合物的从酰氯到氰基的转化。图片来源:Angew. Chem. Int. Ed.


为了更深入地研究反应机理,研究小组尝试分离可能的反应中间体。氮化物2和肉桂酰氯4k在苯/60 ℃条件下反应3小时,可以以30%收率分离得到二钛化合物6。类似的15N-6的合成收率为25%。基于15N-6的氢谱、碳谱和氮谱显示该结构中含有酰胺和桥氮结构。将分离得到的6重新置于苯/60 ℃条件下反应12小时,仅得到痕量的产物5k;额外加入1.0当量的肉桂酰氯,反应可以以80%的收率得到5k,同时分离得到氧桥二钛化合物7(42%收率,Scheme 4)。

Scheme 4. 反应中间体的分离。图片来源:Angew. Chem. Int. Ed.


基于上述的实验结果,研究小组提出了可能的反应机理。通过过渡态A,氮化物2的酰亚胺结构与酰氯发生亲核加成反应,生成中间体B;氯原子发生1,3-迁移(从C到Ti),生成中间体C;然后C与两分子酰氯发生反应得到两分子产物5和中间体D,该过程可能包含质子1,3-迁移(从酰胺氮原子到酰亚胺氮原子),然后再与酰氯发生类似于从2B的亲核加成反应;中间体D中的氯原子发生1,5-迁移(从C到Ti)得到E,再释放两分子产物5(Scheme 5)。

Scheme 5. 可能的反应机理。图片来源:Angew. Chem. Int. Ed.


理论上,由于该反应需要消耗等当量的Ti化合物,原子经济性较差。因此,研究小组设计了如Scheme 6所示的金属Ti的回收再利用:2与酰氯的反应混合物经稀盐酸处理可以以83%的收率得到CpˊTiCl3,再与烷基锂试剂反应可以得到[CpˊTi(CH2SiMe 3)3],该化合物可以活化N2/H2,重新得到氮化物2

Scheme 6. 钛介导的氮气活化法循环合成氰基化合物。图片来源:Angew. Chem. Int. Ed.


总结:

侯召民研究小组利用组内发展的氢化钛配合物,实现了N2的活化,得到新的氮化钛配合物,并在温和条件下,可作为氮源将多种酰氯官能团转化为氰基。该小组还设计了循环合成路线,实现了以钛作为媒介的高效“人工固氮”方法。


http://onlinelibrary.wiley.com/doi/10.1002/anie.201607426/abstract


(本文由岐黄柚子茶供稿)


问题讨论

  • 反应机理中,氯原子为什么会发生从碳到金属中心的迁移?

下方留言评论,参加讨论


如果篇首注明了授权来源,任何转载需获得来源方的许可!如果篇首未特别注明出处,本文版权属于 X-MOLx-mol.com ), 未经许可,谢绝转载!

阿拉丁
分享您的投稿习惯
经济学SSCI期刊
英语语言编辑翻译加编辑新
加速出版服务新
1212购书送好礼
Springer旗下全新催化方向高质新刊
动物学生物学
系统生物学合成生物学
专注于基础生命科学与临床研究的交叉领域
传播分子、细胞和发育生物学领域的重大发现
聚焦分子细胞和生物体生物学
图书出版流程
快速找到合适的投稿机会
热点论文一站获取
定位全球科研英才
中国图象图形学学会合作刊
上海交大
华南理工
西湖大学
上海交大
深圳湾
南开大学
清华大学
新加坡
加州大学
宁波
ACS材料视界
down
wechat
bug