当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
All-Fiber Plasmonic Platform Based on Hybrid Composite Metal/Glass Microwires
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-11-02 , DOI: 10.1021/acs.jpcc.8b08844 Afroditi Petropoulou 1, 2 , Grigoris Antonopoulos 1 , Paul Bastock 3 , George Kakarantzas 1 , Christopher Craig 3 , Daniel W. Hewak 3 , Michalis N. Zervas 3 , Christos Riziotis 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2018-11-02 , DOI: 10.1021/acs.jpcc.8b08844 Afroditi Petropoulou 1, 2 , Grigoris Antonopoulos 1 , Paul Bastock 3 , George Kakarantzas 1 , Christopher Craig 3 , Daniel W. Hewak 3 , Michalis N. Zervas 3 , Christos Riziotis 1
Affiliation
Metal tips are emerging plasmonic structures that can offer high field intensity at the tip apex and high confinement on the nanoscale. However, the fabrication of smooth metal tips with well-defined geometrical characteristics, crucial for optimizing the performance of the plasmonic structure, is not trivial. Furthermore, pure metal tips are exposed to the environment and fragile, thus complicating their use in real applications. The proposed platform based on hybrid composite glass metal microwires can offer the required robustness for device development. An optimized fabrication process of high-quality all-fiber plasmonic tips by tapering such hybrid metal core/dielectric cladding microfibers is proposed and demonstrated experimentally. The presence of the dielectric cladding offers continuous re-excitation of the plasmon modes due to repeated total internal reflection at the glass/air interface, which can dramatically reduce the high losses induced by the metal core. This enables direct light coupling from the distal end of fiber instead of side excitation of the tip, allowing thus their integration in the optical fiber and planar circuits. Plasmonic tips were successfully demonstrated in a highly controllable manner, and their performance was related to simulation results predicting high field enhancement factors up to 105.
中文翻译:
基于混合金属/玻璃微丝的全纤维等离子平台
金属尖端是新兴的等离激元结构,可以在尖端顶部提供高场强,并在纳米级提供高限制。但是,制造具有明确定义的几何特征的平滑金属尖端对优化等离子激元结构的性能至关重要,这并非易事。此外,纯金属尖端暴露于环境中并且易碎,因此使它们在实际应用中的使用变得复杂。所提出的基于混合复合玻璃金属微丝的平台可以为设备开发提供所需的鲁棒性。提出并通过锥形混合金属芯/介电包层微纤维的优化制造高质量全纤维等离子尖端的工艺。由于玻璃/空气界面处的重复全内反射,介电覆层的存在提供了等离子体激元模式的连续再激励,这可以显着降低金属芯引起的高损耗。这使得能够从光纤的远端直接进行光耦合,而不是尖端的侧面激发,从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子 从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子 从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子5。
更新日期:2018-11-05
中文翻译:
基于混合金属/玻璃微丝的全纤维等离子平台
金属尖端是新兴的等离激元结构,可以在尖端顶部提供高场强,并在纳米级提供高限制。但是,制造具有明确定义的几何特征的平滑金属尖端对优化等离子激元结构的性能至关重要,这并非易事。此外,纯金属尖端暴露于环境中并且易碎,因此使它们在实际应用中的使用变得复杂。所提出的基于混合复合玻璃金属微丝的平台可以为设备开发提供所需的鲁棒性。提出并通过锥形混合金属芯/介电包层微纤维的优化制造高质量全纤维等离子尖端的工艺。由于玻璃/空气界面处的重复全内反射,介电覆层的存在提供了等离子体激元模式的连续再激励,这可以显着降低金属芯引起的高损耗。这使得能够从光纤的远端直接进行光耦合,而不是尖端的侧面激发,从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子 从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子 从而允许它们集成在光纤和平面电路中。等离子电极已成功地以高度可控的方式进行了演示,其性能与模拟结果相关,该模拟结果预测了高达10的高场增强因子5。