Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical Porous O‐Doped g‐C3N4 with Enhanced Photocatalytic CO2 Reduction Activity
Small ( IF 13.0 ) Pub Date : 2017-02-03 , DOI: 10.1002/smll.201603938 Junwei Fu 1 , Bicheng Zhu 1 , Chuanjia Jiang 1 , Bei Cheng 1 , Wei You 1 , Jiaguo Yu 1, 2
Small ( IF 13.0 ) Pub Date : 2017-02-03 , DOI: 10.1002/smll.201603938 Junwei Fu 1 , Bicheng Zhu 1 , Chuanjia Jiang 1 , Bei Cheng 1 , Wei You 1 , Jiaguo Yu 1, 2
Affiliation
Artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2 is considered as a potential route for solving ever‐increasing energy crisis and greenhouse effect. Herein, hierarchical porous O‐doped graphitic carbon nitride (g‐C3N4) nanotubes (OCN‐Tube) are prepared via successive thermal oxidation exfoliation and curling‐condensation of bulk g‐C3N4. The as‐prepared OCN‐Tube exhibits hierarchically porous structures, which consist of interconnected multiwalled nanotubes with uniform diameters of 20–30 nm. The hierarchical OCN‐Tube shows excellent photocatalytic CO2 reduction performance under visible light, with methanol evolution rate of 0.88 µmol g−1 h−1, which is five times higher than bulk g‐C3N4 (0.17 µmol g−1 h−1). The enhanced photocatalytic activity of OCN‐Tube is ascribed to the hierarchical nanotube structure and O‐doping effect. The hierarchical nanotube structure endows OCN‐Tube with higher specific surface area, greater light utilization efficiency, and improved molecular diffusion kinetics, due to the more exposed active edges and multiple light reflection/scattering channels. The O‐doping optimizes the band structure of g‐C3N4, resulting in narrower bandgap, greater CO2 affinity, and uptake capacity as well as higher separation efficiency of photogenerated charge carriers. This work provides a novel strategy to design hierarchical g‐C3N4 nanostructures, which can be used as promising photocatalyst for solar energy conversion.
中文翻译:
具有增强的光催化CO2还原活性的分层多孔O掺杂g-C3N4
利用太阳能和CO 2进行碳氢燃料的人工光合作用被认为是解决日益加剧的能源危机和温室效应的潜在途径。在这里,通过连续的热氧化剥落和块状g-C 3 N 4的卷曲缩合,制备了分层的O掺杂的多孔碳掺杂氮化碳(g-C 3 N 4)纳米管(OCN-Tube)。所制备的OCN-管具有分层的多孔结构,该结构由相互连接的多壁纳米管组成,直径均匀,为20–30 nm。分层的OCN-Tube在可见光下显示出出色的光催化CO 2还原性能,甲醇释放速率为0.88 µmol g -1h -1,是本体g-C 3 N 4(0.17 µmol g -1 h -1)的五倍。OCN-Tube增强的光催化活性归因于纳米管的分层结构和O掺杂效应。分层的纳米管结构赋予了OCN-Tube更高的比表面积,更高的光利用效率和更高的分子扩散动力学,这是由于更多的有源边缘和多个光反射/散射通道所致。O掺杂可优化g‐C 3 N 4的能带结构,从而使能带隙更窄,CO 2更大光生载流子的亲和力,吸收能力以及更高的分离效率。这项工作提供了一种设计分层g‐C 3 N 4纳米结构的新颖策略,可以用作太阳能转化的有前途的光催化剂。
更新日期:2017-02-03
中文翻译:
具有增强的光催化CO2还原活性的分层多孔O掺杂g-C3N4
利用太阳能和CO 2进行碳氢燃料的人工光合作用被认为是解决日益加剧的能源危机和温室效应的潜在途径。在这里,通过连续的热氧化剥落和块状g-C 3 N 4的卷曲缩合,制备了分层的O掺杂的多孔碳掺杂氮化碳(g-C 3 N 4)纳米管(OCN-Tube)。所制备的OCN-管具有分层的多孔结构,该结构由相互连接的多壁纳米管组成,直径均匀,为20–30 nm。分层的OCN-Tube在可见光下显示出出色的光催化CO 2还原性能,甲醇释放速率为0.88 µmol g -1h -1,是本体g-C 3 N 4(0.17 µmol g -1 h -1)的五倍。OCN-Tube增强的光催化活性归因于纳米管的分层结构和O掺杂效应。分层的纳米管结构赋予了OCN-Tube更高的比表面积,更高的光利用效率和更高的分子扩散动力学,这是由于更多的有源边缘和多个光反射/散射通道所致。O掺杂可优化g‐C 3 N 4的能带结构,从而使能带隙更窄,CO 2更大光生载流子的亲和力,吸收能力以及更高的分离效率。这项工作提供了一种设计分层g‐C 3 N 4纳米结构的新颖策略,可以用作太阳能转化的有前途的光催化剂。